Spaces:
Running
on
Zero
Running
on
Zero
emirhanbilgic
commited on
Commit
•
05020c4
1
Parent(s):
ff597d6
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,10 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from datasets import load_dataset
|
4 |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
5 |
import soundfile as sf
|
|
|
6 |
import spaces
|
7 |
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -13,15 +15,28 @@ def load_models_and_data():
|
|
13 |
model = SpeechT5ForTextToSpeech.from_pretrained("emirhanbilgic/speecht5_finetuned_emirhan_tr").to(device)
|
14 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
15 |
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
18 |
|
19 |
-
return model, processor, vocoder,
|
20 |
|
21 |
-
model, processor, vocoder,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
@spaces.GPU(duration = 60)
|
24 |
-
def text_to_speech(text):
|
|
|
|
|
|
|
25 |
inputs = processor(text=text, return_tensors="pt").to(device)
|
26 |
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
27 |
sf.write("output.wav", speech.cpu().numpy(), samplerate=16000)
|
@@ -29,10 +44,13 @@ def text_to_speech(text):
|
|
29 |
|
30 |
iface = gr.Interface(
|
31 |
fn=text_to_speech,
|
32 |
-
inputs=
|
|
|
|
|
|
|
33 |
outputs=gr.Audio(label="Generated Speech"),
|
34 |
-
title="Turkish SpeechT5 Text-to-Speech Demo",
|
35 |
-
description="Enter Turkish text and
|
36 |
)
|
37 |
|
38 |
-
iface.launch()
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
6 |
import soundfile as sf
|
7 |
+
from speechbrain.pretrained import EncoderClassifier
|
8 |
import spaces
|
9 |
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
15 |
model = SpeechT5ForTextToSpeech.from_pretrained("emirhanbilgic/speecht5_finetuned_emirhan_tr").to(device)
|
16 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
17 |
|
18 |
+
speaker_model = EncoderClassifier.from_hparams(
|
19 |
+
source="speechbrain/spkrec-xvect-voxceleb",
|
20 |
+
run_opts={"device": device},
|
21 |
+
savedir=os.path.join("/tmp", "speechbrain/spkrec-xvect-voxceleb"),
|
22 |
+
)
|
23 |
|
24 |
+
return model, processor, vocoder, speaker_model
|
25 |
|
26 |
+
model, processor, vocoder, speaker_model = load_models_and_data()
|
27 |
+
|
28 |
+
def create_speaker_embedding(waveform):
|
29 |
+
with torch.no_grad():
|
30 |
+
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform).unsqueeze(0))
|
31 |
+
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
|
32 |
+
speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy()
|
33 |
+
return speaker_embeddings
|
34 |
|
35 |
@spaces.GPU(duration = 60)
|
36 |
+
def text_to_speech(text, waveform):
|
37 |
+
speaker_embeddings = create_speaker_embedding(waveform)
|
38 |
+
speaker_embeddings = torch.tensor(speaker_embeddings).unsqueeze(0).to(device)
|
39 |
+
|
40 |
inputs = processor(text=text, return_tensors="pt").to(device)
|
41 |
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
42 |
sf.write("output.wav", speech.cpu().numpy(), samplerate=16000)
|
|
|
44 |
|
45 |
iface = gr.Interface(
|
46 |
fn=text_to_speech,
|
47 |
+
inputs=[
|
48 |
+
gr.Textbox(label="Enter Turkish text to convert to speech"),
|
49 |
+
gr.Audio(source="upload", type="numpy", label="Upload Speaker Audio"),
|
50 |
+
],
|
51 |
outputs=gr.Audio(label="Generated Speech"),
|
52 |
+
title="Turkish SpeechT5 Text-to-Speech Demo with Custom Speaker Embeddings",
|
53 |
+
description="Enter Turkish text and upload an audio file to generate speech using the fine-tuned SpeechT5 model with custom speaker embeddings."
|
54 |
)
|
55 |
|
56 |
+
iface.launch()
|