# !pip install gradio -q # !pip install transformers -q # %% import gradio as gr import matplotlib.pyplot as plt import numpy as np import pandas as pd import random from matplotlib.ticker import MaxNLocator from transformers import pipeline # %% MODEL_NAMES = [ "bert-base-uncased", "roberta-base", "bert-large-uncased", "roberta-large", ] OWN_MODEL_NAME = "add-a-model" DECIMAL_PLACES = 1 EPS = 1e-5 # to avoid /0 errors # %% # Fire up the models models = dict() for bert_like in MODEL_NAMES: models[bert_like] = pipeline("fill-mask", model=bert_like) # %% def clean_tokens(tokens): return [token.strip() for token in tokens] def prepare_text_for_masking(input_text, mask_token, gendered_tokens, split_key): text_w_masks_list = [ mask_token if word.lower() in gendered_tokens else word for word in input_text.split() ] num_masks = len([m for m in text_w_masks_list if m == mask_token]) text_portions = " ".join(text_w_masks_list).split(split_key) return text_portions, num_masks def get_avg_prob_from_pipeline_outputs(mask_filled_text, gendered_token, num_preds): pronoun_preds = [ sum( [ pronoun["score"] if pronoun["token_str"].strip().lower() in gendered_token else 0.0 for pronoun in top_preds ] ) for top_preds in mask_filled_text ] return round(sum(pronoun_preds) / (EPS + num_preds) * 100, DECIMAL_PLACES) def get_figure(df, gender, n_fit=1): df = df.set_index("x-axis") cols = df.columns xs = list(range(len(df))) ys = df[cols[0]] fig, ax = plt.subplots() # Trying small fig due to rendering issues on HF, not on VS Code fig.set_figheight(3) fig.set_figwidth(9) # find stackoverflow reference p, C_p = np.polyfit(xs, ys, n_fit, cov=1) t = np.linspace(min(xs) - 1, max(xs) + 1, 10 * len(xs)) TT = np.vstack([t ** (n_fit - i) for i in range(n_fit + 1)]).T # matrix multiplication calculates the polynomial values yi = np.dot(TT, p) C_yi = np.dot(TT, np.dot(C_p, TT.T)) # C_y = TT*C_z*TT.T sig_yi = np.sqrt(np.diag(C_yi)) # Standard deviations are sqrt of diagonal ax.fill_between(t, yi + sig_yi, yi - sig_yi, alpha=0.25) ax.plot(t, yi, "-") ax.plot(df, "ro") ax.legend(list(df.columns)) ax.axis("tight") ax.set_xlabel("Value injected into input text") ax.set_title(f"Probability of predicting {gender} tokens.") ax.set_ylabel(f"Softmax prob") ax.tick_params(axis="x", labelrotation=5) ax.set_ylim(0, 100) return fig # %% def predict_masked_tokens( model_name, own_model_name, group_a_tokens, group_b_tokens, indie_vars, split_key, normalizing, n_fit, input_text, ): """Run inference on input_text for each model type, returning df and plots of percentage of gender pronouns predicted as female and male in each target text. """ if model_name not in MODEL_NAMES: model = pipeline("fill-mask", model=own_model_name) else: model = models[model_name] mask_token = model.tokenizer.mask_token indie_vars_list = indie_vars.split(",") group_a_tokens = clean_tokens(group_a_tokens.split(",")) group_b_tokens = clean_tokens(group_b_tokens.split(",")) text_segments, num_preds = prepare_text_for_masking( input_text, mask_token, group_b_tokens + group_a_tokens, split_key ) male_pronoun_preds = [] female_pronoun_preds = [] for indie_var in indie_vars_list: target_text = f"{indie_var}".join(text_segments) mask_filled_text = model(target_text) # Quick hack as realized return type based on how many MASKs in text. if type(mask_filled_text[0]) is not list: mask_filled_text = [mask_filled_text] female_pronoun_preds.append( get_avg_prob_from_pipeline_outputs( mask_filled_text, group_a_tokens, num_preds ) ) male_pronoun_preds.append( get_avg_prob_from_pipeline_outputs( mask_filled_text, group_b_tokens, num_preds ) ) if normalizing: total_gendered_probs = np.add(female_pronoun_preds, male_pronoun_preds) female_pronoun_preds = np.around( np.divide(female_pronoun_preds, total_gendered_probs + EPS) * 100, decimals=DECIMAL_PLACES, ) male_pronoun_preds = np.around( np.divide(male_pronoun_preds, total_gendered_probs + EPS) * 100, decimals=DECIMAL_PLACES, ) results_df = pd.DataFrame({"x-axis": indie_vars_list}) results_df["group_a"] = female_pronoun_preds results_df["group_b"] = male_pronoun_preds female_fig = get_figure( results_df.drop("group_b", axis=1), "group_a", n_fit, ) male_fig = get_figure( results_df.drop("group_a", axis=1), "group_b", n_fit, ) display_text = f"{random.choice(indie_vars_list)}".join(text_segments) return ( display_text, female_fig, male_fig, results_df, ) truck_fn_example = [ MODEL_NAMES[2], "", ", ".join(["truck", "pickup"]), ", ".join(["car", "sedan"]), ", ".join(["city", "neighborhood", "farm"]), "PLACE", "True", 1, ] def truck_1_fn(): return truck_fn_example + ["He loaded up his truck and drove to the PLACE."] def truck_2_fn(): return truck_fn_example + [ "He loaded up the bed of his truck and drove to the PLACE." ] # # %% demo = gr.Blocks() with demo: gr.Markdown("# Spurious Correlation Evaluation for Pre-trained LLMs") gr.Markdown("## Instructions for this Demo") gr.Markdown( "1) Click on one of the examples below to pre-populate the input fields." ) gr.Markdown( "2) Check out the pre-populated fields as you scroll down to the ['Hit Submit...'] button!" ) gr.Markdown( "3) Repeat steps (1) and (2) with more pre-populated inputs or with your own values in the input fields!" ) gr.Markdown( """The pre-populated inputs below are for a demo example of a location-vs-vehicle-type spurious correlation. We can see this spurious correlation largely disappears in the well-specified example text.

results

results

""" ) gr.Markdown("## Example inputs") gr.Markdown( "Click a button below to pre-populate input fields with example values. Then scroll down to Hit Submit to generate predictions." ) with gr.Row(): truck_1_gen = gr.Button( "Click for non-well-specified(?) vehicle-type example inputs" ) gr.Markdown( "<-- Multiple solutions with low training error. LLM sensitive to spurious(?) correlations." ) truck_2_gen = gr.Button("Click for well-specified vehicle-type example inputs") gr.Markdown( "<-- Fewer solutions with low training error. LLM less sensitive to spurious(?) correlations." ) gr.Markdown("## Input fields") gr.Markdown( f"A) Pick a spectrum of comma separated values for text injection and x-axis." ) with gr.Row(): group_a_tokens = gr.Textbox( type="text", lines=3, label="A) To-MASK tokens A: Comma separated words that account for accumulated group A softmax probs", ) group_b_tokens = gr.Textbox( type="text", lines=3, label="B) To-MASK tokens B: Comma separated words that account for accumulated group B softmax probs", ) with gr.Row(): x_axis = gr.Textbox( type="text", lines=3, label="C) Comma separated values for text injection and x-axis", ) gr.Markdown("D) Pick a pre-loaded BERT-family model of interest on the right.") gr.Markdown( f"Or E) select `{OWN_MODEL_NAME}`, then add the mame of any other Hugging Face model that supports the [fill-mask](https://huggingface.co./models?pipeline_tag=fill-mask) task on the right (note: this may take some time to load)." ) with gr.Row(): model_name = gr.Radio( MODEL_NAMES + [OWN_MODEL_NAME], type="value", label="D) BERT-like model.", ) own_model_name = gr.Textbox( label="E) If you selected an 'add-a-model' model, put any Hugging Face pipeline model name (that supports the fill-mask task) here.", ) gr.Markdown( "F) Pick if you want to the predictions normalied to only those from group A or B." ) gr.Markdown( "G) Also tell the demo what special token you will use in your input text, that you would like replaced with the spectrum of values you listed above." ) gr.Markdown( "And H) the degree of polynomial fit used for high-lighting potential spurious association." ) with gr.Row(): to_normalize = gr.Dropdown( ["False", "True"], label="D) Normalize model's predictions?", type="index", ) place_holder = gr.Textbox( label="E) Special token place-holder", ) n_fit = gr.Dropdown( list(range(1, 5)), label="F) Degree of polynomial fit", type="value", ) gr.Markdown( "I) Finally, add input text that includes at least one of the '`To-MASK`' tokens from (A) or (B) and one place-holder token from (G)." ) with gr.Row(): input_text = gr.Textbox( lines=2, label="I) Input text with a '`To-MASK`' and place-holder token", ) gr.Markdown("## Outputs!") with gr.Row(): btn = gr.Button("Hit submit to generate predictions!") with gr.Row(): sample_text = gr.Textbox( type="text", label="Output text: Sample of text fed to model" ) with gr.Row(): female_fig = gr.Plot(type="auto") male_fig = gr.Plot(type="auto") with gr.Row(): df = gr.Dataframe( show_label=True, overflow_row_behaviour="show_ends", label="Table of softmax probability for grouped predictions", ) with gr.Row(): truck_1_gen.click( truck_1_fn, inputs=[], outputs=[ model_name, own_model_name, group_a_tokens, group_b_tokens, x_axis, place_holder, to_normalize, n_fit, input_text, ], ) truck_2_gen.click( truck_2_fn, inputs=[], outputs=[ model_name, own_model_name, group_a_tokens, group_b_tokens, x_axis, place_holder, to_normalize, n_fit, input_text, ], ) btn.click( predict_masked_tokens, inputs=[ model_name, own_model_name, group_a_tokens, group_b_tokens, x_axis, place_holder, to_normalize, n_fit, input_text, ], outputs=[sample_text, female_fig, male_fig, df], ) demo.launch(debug=True) # %%