Spaces:
Sleeping
Sleeping
import cv2 | |
import spaces | |
import numpy as np | |
import gradio as gr | |
import tempfile | |
import os | |
from datetime import timedelta | |
os.environ['CUDA_VISIBLE_DEVICES'] = "0" | |
def preprocess_frame(frame): | |
resized_frame = cv2.resize(frame, (224, 224)) | |
normalized_frame = resized_frame / 255.0 | |
return np.expand_dims(normalized_frame, axis=0) | |
def draw_label(frame, label, position=(50, 50), font_scale=1, thickness=2): | |
if label == 'Drowsy': | |
color = (0, 0, 255) # Red for Drowsy | |
bg_color = (0, 0, 100) # Darker background for Drowsy | |
else: | |
color = (0, 255, 0) # Green for Alert | |
bg_color = (0, 100, 0) # Darker background for Alert | |
font = cv2.FONT_HERSHEY_SIMPLEX | |
text_size = cv2.getTextSize(label, font, font_scale, thickness)[0] | |
text_x, text_y = position | |
rect_start = (text_x - 5, text_y - text_size[1] - 15) | |
rect_end = (text_x + text_size[0] + 5, text_y + 5) | |
cv2.rectangle(frame, rect_start, rect_end, bg_color, -1) | |
cv2.putText(frame, label, (text_x, text_y), font, font_scale, (255, 255, 255), thickness + 2, lineType=cv2.LINE_AA) | |
cv2.putText(frame, label, (text_x, text_y), font, font_scale, color, thickness, lineType=cv2.LINE_AA) | |
def add_timestamp(frame, timestamp): | |
font = cv2.FONT_HERSHEY_SIMPLEX | |
cv2.putText(frame, timestamp, (10, frame.shape[0] - 10), font, 0.5, (255, 255, 255), 1, cv2.LINE_AA) | |
def draw_progress_bar(frame, progress): | |
frame_width = frame.shape[1] | |
bar_height = 5 | |
bar_width = int(frame_width * progress) | |
cv2.rectangle(frame, (0, 0), (bar_width, bar_height), (0, 255, 0), -1) | |
cv2.rectangle(frame, (0, 0), (frame_width, bar_height), (255, 255, 255), 1) | |
def predict_drowsiness(video_path): | |
import tensorflow as tf | |
print(tf.config.list_physical_devices("GPU")) | |
model = tf.keras.models.load_model('cnn.keras') | |
cap = cv2.VideoCapture(video_path) | |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
fps = int(cap.get(cv2.CAP_PROP_FPS)) | |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
skip_interval = int(fps * 0.2) | |
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_output: | |
temp_output_path = temp_output.name | |
out = cv2.VideoWriter(temp_output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (frame_width, frame_height)) | |
frame_count = 0 | |
drowsy_count = 0 | |
alert_count = 0 | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
progress = frame_count / total_frames | |
draw_progress_bar(frame, progress) | |
timestamp = str(timedelta(seconds=int(frame_count/fps))) | |
add_timestamp(frame, timestamp) | |
if frame_count % skip_interval == 0: | |
preprocessed_frame = preprocess_frame(frame) | |
prediction = model.predict(preprocessed_frame) | |
drowsiness = np.argmax(prediction) | |
label = 'Drowsy' if drowsiness == 0 else 'Alert' | |
draw_label(frame, label, position=(50, 50)) | |
if label == 'Drowsy': | |
drowsy_count += 1 | |
else: | |
alert_count += 1 | |
# Add drowsiness statistics | |
stats_text = f"Drowsy: {drowsy_count} | Alert: {alert_count}" | |
cv2.putText(frame, stats_text, (frame_width - 200, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1, cv2.LINE_AA) | |
out.write(frame) | |
frame_count += 1 | |
cap.release() | |
out.release() | |
return temp_output_path | |
interface = gr.Interface( | |
fn=predict_drowsiness, | |
inputs=gr.Video(), | |
outputs="video", | |
title="Enhanced Drowsiness Detection in Video", | |
description="Upload a video or record one to detect drowsiness with improved visuals and statistics.", | |
examples=["027_sunglasses_mix.mp4", "003_nightglasses_mix.mp4", "021_glasses_mix.mp4"] | |
) | |
if __name__ == "__main__": | |
interface.launch() |