Commit
·
e09a6bd
1
Parent(s):
e34187d
Initial commit
Browse files
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_path = 'elliealbertson/identifying_pregnancy_clinical_notes'
|
2 |
+
tokenizer = BertTokenizer.from_pretrained(model_path)
|
3 |
+
model = BertForSequenceClassification.from_pretrained(model_path)
|
4 |
+
|
5 |
+
def predict(text):
|
6 |
+
|
7 |
+
inputs = tokenizer(text, return_tensors="pt")
|
8 |
+
num_tokens = inputs['input_ids'].size(1)
|
9 |
+
|
10 |
+
if num_tokens <= 512:
|
11 |
+
|
12 |
+
outputs = model(**inputs)
|
13 |
+
|
14 |
+
predicted_class_id = torch.argmax(outputs.logits).item()
|
15 |
+
|
16 |
+
probability_of_predicted_class = round(torch.nn.functional.softmax(outputs.logits, dim=1)[0, predicted_class_id].item(),2)
|
17 |
+
|
18 |
+
if (predicted_class_id == 0) & (probability_of_predicted_class >= 0.5):
|
19 |
+
predicted_class_label = "No, the note does not discuss the patient's pregnancy based on the model's assessment."
|
20 |
+
elif (predicted_class_id == 1) & (probability_of_predicted_class >= 0.5):
|
21 |
+
predicted_class_label = "Yes, the note discusses the patient's pregnancy based on the model's assessment."
|
22 |
+
else:
|
23 |
+
predicted_class_label = "The model was unable to determine with high certainty whether or not the note discusses the patient's pregnancy. Please provide additional text or a different note."
|
24 |
+
|
25 |
+
return predicted_class_label
|
26 |
+
|
27 |
+
else:
|
28 |
+
|
29 |
+
error_message = 'Unfortunately the model is limited in how much text it can process at once. Please enter a shorter note.'
|
30 |
+
|
31 |
+
return error_message
|
32 |
+
|
33 |
+
with gr.Blocks() as interface:
|
34 |
+
gr.Markdown("<h1 align='center'>Identifying Pregnancy in Clinical Notes</h1>")
|
35 |
+
gr.Markdown("<p align='center'>Use this app to classify a clinical note as discussing or not discussing the patient's pregnancy.</p>")
|
36 |
+
with gr.Row():
|
37 |
+
with gr.Column():
|
38 |
+
inputs = gr.Textbox(label='Input a clinical note here:', lines=4)
|
39 |
+
button = gr.Button('Assess Note')
|
40 |
+
gr.Examples(['The patient is pregnant.', 'She has high cholesterol and hypertension.', 'Normal vaginal delivery.', 'Fetus development normal.', 'Presented with nausea.', 'Broken arm and leg.'], inputs)
|
41 |
+
with gr.Column():
|
42 |
+
outputs=gr.Textbox(label="Does the note discuss the patient's pregnancy?", lines=4)
|
43 |
+
button.click(fn=predict, inputs=inputs, outputs=outputs, queue=False)
|
44 |
+
gr.Markdown("<p align='center'>Model fine-tuned from <a href='https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT' target='_blank'> Bio+ClinicalBERT </a>.</p>")
|
45 |
+
|
46 |
+
interface.launch()
|