Spaces:
Runtime error
Runtime error
File size: 9,547 Bytes
f086839 524c5a8 f086839 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import gradio as gr
import argparse
import torch
import transformers
from distutils.util import strtobool
from tokenizers import pre_tokenizers
from transformers.generation.utils import logger
import mdtex2html
import warnings
logger.setLevel("ERROR")
warnings.filterwarnings("ignore")
warnings.filterwarnings("ignore")
def _strtobool(x):
return bool(strtobool(x))
QA_SPECIAL_TOKENS = {
"Question": "<|prompter|>",
"Answer": "<|assistant|>",
"System": "<|system|>",
"StartPrefix": "<|prefix_begin|>",
"EndPrefix": "<|prefix_end|>",
"InnerThought": "<|inner_thoughts|>",
"EndOfThought": "<eot>"
}
def format_pairs(pairs, eos_token, add_initial_reply_token=False):
conversations = [
"{}{}{}".format(
QA_SPECIAL_TOKENS["Question" if i % 2 == 0 else "Answer"], pairs[i], eos_token)
for i in range(len(pairs))
]
if add_initial_reply_token:
conversations.append(QA_SPECIAL_TOKENS["Answer"])
return conversations
def format_system_prefix(prefix, eos_token):
return "{}{}{}".format(
QA_SPECIAL_TOKENS["System"],
prefix,
eos_token,
)
def get_specific_model(
model_name, seq2seqmodel=False, without_head=False, cache_dir=".cache", quantization=False, **kwargs
):
# encoder-decoder support for Flan-T5 like models
# for now, we can use an argument but in the future,
# we can automate this
model = transformers.LlamaForCausalLM.from_pretrained(model_name, **kwargs)
return model
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, required=True)
parser.add_argument("--max_new_tokens", type=int, default=200)
parser.add_argument("--top_k", type=int, default=40)
parser.add_argument("--do_sample", type=_strtobool, default=True)
# parser.add_argument("--system_prefix", type=str, default=None)
parser.add_argument("--per-digit-tokens", action="store_true")
args = parser.parse_args()
# # 开放问答
# system_prefix = \
# "<|system|>"'''你是一个人工智能助手,名字叫EduChat。
# - EduChat是一个由华东师范大学开发的对话式语言模型。
# EduChat的工具
# - Web search: Disable.
# - Calculators: Disable.
# EduChat的能力
# - Inner Thought: Disable.
# 对话主题
# - General: Enable.
# - Psychology: Disable.
# - Socrates: Disable.'''"</s>"
# # 启发式教学
# system_prefix = \
# "<|system|>"'''你是一个人工智能助手,名字叫EduChat。
# - EduChat是一个由华东师范大学开发的对话式语言模型。
# EduChat的工具
# - Web search: Disable.
# - Calculators: Disable.
# EduChat的能力
# - Inner Thought: Disable.
# 对话主题
# - General: Disable.
# - Psychology: Disable.
# - Socrates: Enable.'''"</s>"
# 情感支持
system_prefix = \
"<|system|>"'''你是一个人工智能助手,名字叫EduChat。
- EduChat是一个由华东师范大学开发的对话式语言模型。
EduChat的工具
- Web search: Disable.
- Calculators: Disable.
EduChat的能力
- Inner Thought: Disable.
对话主题
- General: Disable.
- Psychology: Enable.
- Socrates: Disable.'''"</s>"
# # 情感支持(with InnerThought)
# system_prefix = \
# "<|system|>"'''你是一个人工智能助手,名字叫EduChat。
# - EduChat是一个由华东师范大学开发的对话式语言模型。
# EduChat的工具
# - Web search: Disable.
# - Calculators: Disable.
# EduChat的能力
# - Inner Thought: Enable.
# 对话主题
# - General: Disable.
# - Psychology: Enable.
# - Socrates: Disable.'''"</s>"
print('Loading model...')
model = get_specific_model(args.model_path)
model.half().cuda()
model.gradient_checkpointing_enable() # reduce number of stored activations
print('Loading tokenizer...')
tokenizer = transformers.LlamaTokenizer.from_pretrained(args.model_path)
tokenizer.add_special_tokens(
{
"pad_token": "</s>",
"eos_token": "</s>",
"sep_token": "<s>",
}
)
additional_special_tokens = (
[]
if "additional_special_tokens" not in tokenizer.special_tokens_map
else tokenizer.special_tokens_map["additional_special_tokens"]
)
additional_special_tokens = list(
set(additional_special_tokens + list(QA_SPECIAL_TOKENS.values())))
print("additional_special_tokens:", additional_special_tokens)
tokenizer.add_special_tokens(
{"additional_special_tokens": additional_special_tokens})
if args.per_digit_tokens:
tokenizer._tokenizer.pre_processor = pre_tokenizers.Digits(True)
human_token_id = tokenizer.additional_special_tokens_ids[
tokenizer.additional_special_tokens.index(QA_SPECIAL_TOKENS["Question"])
]
print('Type "quit" to exit')
print("Press Control + C to restart conversation (spam to exit)")
conversation_history = []
"""Override Chatbot.postprocess"""
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
gr.Chatbot.postprocess = postprocess
def parse_text(text):
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f'<br></code></pre>'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>"+line
text = "".join(lines)
return text
def predict(input, chatbot, max_length, top_p, temperature, history):
query = parse_text(input)
chatbot.append((query, ""))
conversation_history = []
for i, (old_query, response) in enumerate(history):
conversation_history.append(old_query)
conversation_history.append(response)
conversation_history.append(query)
query_str = "".join(format_pairs(conversation_history,
tokenizer.eos_token, add_initial_reply_token=True))
if system_prefix:
query_str = system_prefix + query_str
print("query:", query_str)
batch = tokenizer.encode(
query_str,
return_tensors="pt",
)
with torch.cuda.amp.autocast():
out = model.generate(
input_ids=batch.to(model.device),
# The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt.
max_new_tokens=args.max_new_tokens,
do_sample=args.do_sample,
max_length=max_length,
top_k=args.top_k,
top_p=top_p,
temperature=temperature,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id,
)
if out[0][-1] == tokenizer.eos_token_id:
response = out[0][:-1]
else:
response = out[0]
response = tokenizer.decode(out[0]).split(QA_SPECIAL_TOKENS["Answer"])[-1]
conversation_history.append(response)
with open("./educhat_query_record.txt", 'a+') as f:
f.write(str(conversation_history) + '\n')
chatbot[-1] = (query, parse_text(response))
history = history + [(query, response)]
print(f"chatbot is {chatbot}")
print(f"history is {history}")
return chatbot, history
def reset_user_input():
return gr.update(value='')
def reset_state():
return [], []
with gr.Blocks() as demo:
gr.HTML("""<h1 align="center">欢迎使用 EduChat 人工智能助手!</h1>""")
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=12):
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
container=False)
with gr.Column(min_width=32, scale=1):
submitBtn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_length = gr.Slider(
0, 2048, value=2048, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=0.2, step=0.01,
label="Top P", interactive=True)
temperature = gr.Slider(
0, 1, value=1, step=0.01, label="Temperature", interactive=True)
history = gr.State([]) # (message, bot_message)
submitBtn.click(predict, [user_input, chatbot, max_length, top_p, temperature, history], [chatbot, history],
show_progress=True)
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)
demo.queue().launch(inbrowser=True, share=True) |