|
import os |
|
from huggingface_hub import CommitOperationAdd, create_commit, RepoUrl |
|
from huggingface_hub import EvalResult, ModelCard |
|
from huggingface_hub.repocard_data import eval_results_to_model_index |
|
import time |
|
from pytablewriter import MarkdownTableWriter |
|
import gradio as gr |
|
from openllm import get_json_format_data, get_datas |
|
import pandas as pd |
|
import traceback |
|
from huggingface_hub import HfApi |
|
|
|
BOT_HF_TOKEN = os.getenv('BOT_HF_TOKEN') |
|
|
|
data = get_json_format_data() |
|
finished_models = get_datas(data) |
|
df = pd.DataFrame(finished_models) |
|
|
|
source_name = "Open Portuguese LLM Leaderboard" |
|
default_pull_request_title = "Adding the Open Portuguese LLM Leaderboard Evaluation Results" |
|
|
|
desc = """ |
|
This is an automated PR created with https://huggingface.co./spaces/eduagarcia-temp/portuguese-leaderboard-results-to-modelcard |
|
|
|
The purpose of this PR is to add evaluation results from the Open Portuguese LLM Leaderboard to your model card. |
|
|
|
If you encounter any issues, please report them to https://huggingface.co./spaces/eduagarcia-temp/portuguese-leaderboard-results-to-modelcard/discussions |
|
""" |
|
|
|
def search(df, value): |
|
result_df = df[df["Model Name"] == value] |
|
return result_df.iloc[0].to_dict() if not result_df.empty else None |
|
|
|
|
|
def get_details_url(repo): |
|
|
|
return f"https://huggingface.co./datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/{repo}" |
|
|
|
|
|
def get_query_url(repo): |
|
return f"https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query={repo}" |
|
|
|
|
|
def get_task_summary(results): |
|
return { |
|
"ENEM": |
|
{"dataset_type":"eduagarcia/enem_challenge", |
|
"dataset_name":"ENEM Challenge (No Images)", |
|
"metric_type":"acc", |
|
"metric_value":results["ENEM"], |
|
"dataset_config": None, |
|
"dataset_split":"train", |
|
"dataset_revision":None, |
|
"dataset_args":{"num_few_shot": 3}, |
|
"metric_name":"accuracy" |
|
}, |
|
"BLUEX": |
|
{"dataset_type":"eduagarcia-temp/BLUEX_without_images", |
|
"dataset_name":"BLUEX (No Images)", |
|
"metric_type":"acc", |
|
"metric_value":results["BLUEX"], |
|
"dataset_config": None, |
|
"dataset_split":"train", |
|
"dataset_revision":None, |
|
"dataset_args":{"num_few_shot": 3}, |
|
"metric_name":"accuracy" |
|
}, |
|
"OAB Exams": |
|
{"dataset_type":"eduagarcia/oab_exams", |
|
"dataset_name":"OAB Exams", |
|
"metric_type":"acc", |
|
"metric_value":results["OAB Exams"], |
|
"dataset_config": None, |
|
"dataset_split":"train", |
|
"dataset_revision":None, |
|
"dataset_args":{"num_few_shot": 3}, |
|
"metric_name":"accuracy" |
|
}, |
|
"ASSIN2 RTE": |
|
{"dataset_type":"assin2", |
|
"dataset_name":"Assin2 RTE", |
|
"metric_type":"f1_macro", |
|
"metric_value":results["ASSIN2 RTE"], |
|
"dataset_config": None, |
|
"dataset_split":"test", |
|
"dataset_revision":None, |
|
"dataset_args":{"num_few_shot": 15}, |
|
"metric_name":"f1-macro" |
|
}, |
|
"ASSIN2 STS": |
|
{"dataset_type":"eduagarcia/portuguese_benchmark", |
|
"dataset_name":"Assin2 STS", |
|
"metric_type":"pearson", |
|
"metric_value":results["ASSIN2 STS"], |
|
"dataset_config": None, |
|
"dataset_split":"test", |
|
"dataset_revision":None, |
|
"dataset_args":{"num_few_shot": 15}, |
|
"metric_name":"pearson" |
|
}, |
|
"FAQUAD NLI": |
|
{"dataset_type":"ruanchaves/faquad-nli", |
|
"dataset_name":"FaQuAD NLI", |
|
"metric_type":"f1_macro", |
|
"metric_value":results["FAQUAD NLI"], |
|
"dataset_config": None, |
|
"dataset_split":"test", |
|
"dataset_revision":None, |
|
"dataset_args":{"num_few_shot": 15}, |
|
"metric_name":"f1-macro" |
|
}, |
|
"HateBR": |
|
{"dataset_type":"ruanchaves/hatebr", |
|
"dataset_name":"HateBR Binary", |
|
"metric_type":"f1_macro", |
|
"metric_value":results["HateBR"], |
|
"dataset_config": None, |
|
"dataset_split":"test", |
|
"dataset_revision":None, |
|
"dataset_args":{"num_few_shot": 25}, |
|
"metric_name":"f1-macro" |
|
}, |
|
"PT Hate Speech": |
|
{"dataset_type":"hate_speech_portuguese", |
|
"dataset_name":"PT Hate Speech Binary", |
|
"metric_type":"f1_macro", |
|
"metric_value":results["PT Hate Speech"], |
|
"dataset_config": None, |
|
"dataset_split":"test", |
|
"dataset_revision":None, |
|
"dataset_args":{"num_few_shot": 25}, |
|
"metric_name":"f1-macro" |
|
}, |
|
"tweetSentBR": |
|
{"dataset_type":"eduagarcia/tweetsentbr_fewshot", |
|
"dataset_name":"tweetSentBR", |
|
"metric_type":"f1_macro", |
|
"metric_value":results["tweetSentBR"], |
|
"dataset_config": None, |
|
"dataset_split":"test", |
|
"dataset_revision":None, |
|
"dataset_args":{"num_few_shot": 25}, |
|
"metric_name":"f1-macro" |
|
} |
|
} |
|
|
|
def get_eval_results(repo): |
|
results = search(df, repo) |
|
task_summary = get_task_summary(results) |
|
md_writer = MarkdownTableWriter() |
|
md_writer.headers = ["Metric", "Value"] |
|
md_writer.value_matrix = [["Average", f"**{results['Average ⬆️']}**"]] + [[v["dataset_name"], v["metric_value"]] for v in task_summary.values()] |
|
|
|
text = f""" |
|
# Open Portuguese LLM Leaderboard Evaluation Results |
|
|
|
Detailed results can be found [here]({get_details_url(repo)}) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard) |
|
|
|
{md_writer.dumps()} |
|
""" |
|
return text |
|
|
|
|
|
def get_edited_yaml_readme(repo, token: str | None): |
|
card = ModelCard.load(repo, token=token) |
|
results = search(df, repo) |
|
|
|
common = {"task_type": 'text-generation', "task_name": 'Text Generation', "source_name": source_name, "source_url": get_query_url(repo)} |
|
|
|
tasks_results = get_task_summary(results) |
|
|
|
if not card.data['eval_results']: |
|
card.data["model-index"] = eval_results_to_model_index(repo.split('/')[1], [EvalResult(**task, **common) for task in tasks_results.values()]) |
|
else: |
|
for task in tasks_results.values(): |
|
cur_result = EvalResult(**task, **common) |
|
if any(result.is_equal_except_value(cur_result) for result in card.data['eval_results']): |
|
continue |
|
card.data['eval_results'].append(cur_result) |
|
|
|
return str(card) |
|
|
|
def pr_already_exists(repo, token: str | None = None): |
|
card = ModelCard.load(repo, token=token) |
|
if 'eval_results' in card.data and card.data['eval_results']: |
|
for x in card.data['eval_results']: |
|
if x.source_name == source_name: |
|
return True |
|
if 'Open Portuguese LLM Leaderboard' in card.content: |
|
return True |
|
if 'Open PT LLM Leaderboard' in card.content: |
|
return True |
|
|
|
api = HfApi(token=token) |
|
for x in api.get_repo_discussions(repo): |
|
if x.title == default_pull_request_title: |
|
return True |
|
if x.author == "leaderboard-pt-pr-bot": |
|
return True |
|
if x.author == "eduagarcia" and x.is_pull_request: |
|
return True |
|
|
|
return False |
|
|
|
def commit(repo, pr_number=None, message=default_pull_request_title, oauth_token: gr.OAuthToken | None = None, check_if_pr_exists=False): |
|
if oauth_token is None: |
|
gr.Warning("You are not logged in; therefore, the leaderboard-pr-bot will open the pull request instead of you. Click on 'Sign in with Huggingface' to log in.") |
|
token = BOT_HF_TOKEN |
|
elif oauth_token.expires_at < time.time(): |
|
raise gr.Error("Token expired. Logout and try again.") |
|
else: |
|
token = oauth_token.token |
|
|
|
if repo.startswith("https://huggingface.co./"): |
|
try: |
|
repo = RepoUrl(repo).repo_id |
|
except Exception: |
|
raise gr.Error(f"Not a valid repo id: {str(repo)}") |
|
|
|
if check_if_pr_exists or token == BOT_HF_TOKEN: |
|
if pr_already_exists(repo, token): |
|
return "PR already exists, Login to make a duplicate PR" |
|
|
|
edited = {"revision": f"refs/pr/{pr_number}"} if pr_number else {"create_pr": True} |
|
|
|
try: |
|
try: |
|
readme_text = get_edited_yaml_readme(repo, token=token) + '\n' + get_eval_results(repo) |
|
except Exception as e: |
|
if "Repo card metadata block was not found." in str(e): |
|
readme_text = get_edited_yaml_readme(repo, token=token) |
|
else: |
|
traceback.print_exc() |
|
print(f"Something went wrong: {e}") |
|
|
|
liste = [CommitOperationAdd(path_in_repo="README.md", path_or_fileobj=readme_text.encode())] |
|
commit = (create_commit(repo_id=repo, token=token, operations=liste, commit_message=message, commit_description=desc, repo_type="model", **edited).pr_url) |
|
|
|
return commit |
|
|
|
except Exception as e: |
|
|
|
if "Discussions are disabled for this repo" in str(e): |
|
return "Discussions disabled" |
|
elif "Cannot access gated repo" in str(e): |
|
return "Gated repo" |
|
elif "Repository Not Found" in str(e): |
|
return "Repository Not Found" |
|
else: |
|
return e |
|
|
|
if __name__ == "__main__": |
|
print(get_eval_results("Qwen/Qwen1.5-72B-Chat")) |