import torch from transformers import BertTokenizer from regression_models import BERTRegression max_len = 80 # Load tokenizer tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") # Load model architecture bertregressor = BERTRegression() bertregressor.load_state_dict(torch.load('bert_regression_model.pth', map_location=torch.device('cpu'))) bertregressor.eval() def predict_price(name, item_condition, category, brand_name, shipping_included, item_description): print((name, item_condition, category, brand_name, shipping_included, item_description)) # Preprocess Input if shipping_included: shipping_str = "Includes Shipping" else: shipping_str = "No Shipping" combined = "Item Name: " + name + \ " Description: " + item_description + \ " Condition: " + item_condition + \ " Category: " + category + \ " Brand " + brand_name + \ " Shipping: " + shipping_str inputs = tokenizer.encode_plus( combined, None, add_special_tokens=True, max_length=max_len, padding="max_length", truncation=True, return_tensors="pt" ) input_ids = inputs["input_ids"] attention_mask = inputs["attention_mask"] with torch.no_grad(): output = bertregressor(input_ids, attention_mask) return output.item() demo = gr.Interface( fn = predict_price, inputs = [gr.Textbox(label="Item Name"), gr.Dropdown(['Poor', 'Okay', 'Good', 'Excellent', 'Like New'], label="Item Condition", info="What condition is the item in?"), gr.Textbox(label="Category on Mercari"), gr.Textbox(label="Brand"), gr.Checkbox(label="Shipping Included"), gr.Textbox(label="Description") ], #outputs = gr.Textbox() outputs= gr.Number() ) demo.launch()