Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from transformers import BertModel, BertTokenizer | |
class BERTRegression(nn.Module): | |
def __init__(self): | |
super(BERTRegression, self).__init__() | |
self.bert = BertModel.from_pretrained("bert-base-uncased") | |
self.dropout = nn.Dropout(0.1) | |
self.linear = nn.Linear(self.bert.config.hidden_size, 1) | |
def forward(self, input_ids, attention_mask): | |
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask) | |
pooled_output = outputs.pooler_output | |
pooled_output = self.dropout(pooled_output) | |
logits = self.linear(pooled_output) | |
return logits.squeeze(-1) |