echo840 commited on
Commit
4936caa
β€’
1 Parent(s): b6c692d

Upload 2 files

Browse files
Files changed (2) hide show
  1. OCRBench.csv +13 -0
  2. leadboard.py +174 -0
OCRBench.csv ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Model,Text Recognition,Scene Text-Centric VQA,Doc-Oriented VQA,KIE,HMER,Final Score,Link
2
+ Gemini,215,174,128,134,8,659,https://deepmind.google/technologies/gemini/
3
+ GPT4V,167,163,146,160,9,645,https://openai.com/
4
+ Monkey,174,161,91,88,0,514,https://arxiv.org/abs/2311.06607
5
+ mPLUG-Owl2,153,153,41,19,0,366,https://arxiv.org/abs/2311.04257
6
+ LLaVAR,186,122,25,13,0,346,https://arxiv.org/abs/2306.17107
7
+ LLaVA1.5-13B,176,129,19,7,0,331,https://arxiv.org/abs/2310.03744
8
+ LLaVA1.5-7B,160,117,15,5,0,297,https://arxiv.org/abs/2310.03744
9
+ mPLUG-Owl,172,104,18,3,0,297,https://arxiv.org/abs/2304.14178
10
+ BLIVA,165,103,22,1,0,291,https://arxiv.org/abs/2308.09936
11
+ InstructBLIP,168,93,14,1,0,276,https://arxiv.org/abs/2305.06500
12
+ BLIP2-6.7B,154,71,10,0,0,235,https://arxiv.org/abs/2301.12597
13
+ MiniGPT4V2,124,29,4,0,0,157,https://arxiv.org/abs/2310.09478
leadboard.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import ast
2
+ import argparse
3
+ import glob
4
+ import pickle
5
+
6
+ import gradio as gr
7
+ import numpy as np
8
+ import pandas as pd
9
+ block_css = """
10
+ #notice_markdown {
11
+ font-size: 104%
12
+ }
13
+ #notice_markdown th {
14
+ display: none;
15
+ }
16
+ #notice_markdown td {
17
+ padding-top: 6px;
18
+ padding-bottom: 6px;
19
+ }
20
+ #leaderboard_markdown {
21
+ font-size: 104%
22
+ }
23
+ #leaderboard_markdown td {
24
+ padding-top: 6px;
25
+ padding-bottom: 6px;
26
+ }
27
+ #leaderboard_dataframe td {
28
+ line-height: 0.1em;
29
+ }
30
+ footer {
31
+ display:none !important
32
+ }
33
+ .image-container {
34
+ display: flex;
35
+ align-items: center;
36
+ padding: 1px;
37
+ }
38
+ .image-container img {
39
+ margin: 0 30px;
40
+ height: 20px;
41
+ max-height: 100%;
42
+ width: auto;
43
+ max-width: 20%;
44
+ }
45
+ """
46
+ def model_hyperlink(model_name, link):
47
+ return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
48
+ def load_leaderboard_table_csv(filename, add_hyperlink=True):
49
+ lines = open(filename).readlines()
50
+ heads = [v.strip() for v in lines[0].split(",")]
51
+ rows = []
52
+ for i in range(1, len(lines)):
53
+ row = [v.strip() for v in lines[i].split(",")]
54
+ for j in range(len(heads)):
55
+ item = {}
56
+ for h, v in zip(heads, row):
57
+ if h != "Model" and h != "Link":
58
+ item[h] = int(v)
59
+ else:
60
+ item[h] = v
61
+ if add_hyperlink:
62
+ item["Model"] = model_hyperlink(item["Model"], item["Link"])
63
+ rows.append(item)
64
+ return rows
65
+
66
+ def get_arena_table(model_table_df):
67
+ # sort by rating
68
+ model_table_df = model_table_df.sort_values(by=["Final Score"], ascending=False)
69
+ values = []
70
+ for i in range(len(model_table_df)):
71
+ row = []
72
+ model_key = model_table_df.index[i]
73
+ model_name = model_table_df["Model"].values[model_key]
74
+ # rank
75
+ row.append(i + 1)
76
+ # model display name
77
+ row.append(model_name)
78
+
79
+ row.append(
80
+ model_table_df["Text Recognition"].values[model_key]
81
+ )
82
+
83
+ row.append(
84
+ model_table_df["Scene Text-Centric VQA"].values[model_key]
85
+ )
86
+
87
+ row.append(
88
+ model_table_df["Doc-Oriented VQA"].values[model_key]
89
+ )
90
+
91
+ row.append(
92
+ model_table_df["KIE"].values[model_key]
93
+ )
94
+
95
+ row.append(
96
+ model_table_df["HMER"].values[model_key]
97
+ )
98
+
99
+ row.append(
100
+ model_table_df["Final Score"].values[model_key]
101
+ )
102
+ values.append(row)
103
+ return values
104
+
105
+ def build_leaderboard_tab(leaderboard_table_file, show_plot=False):
106
+ if leaderboard_table_file:
107
+ data = load_leaderboard_table_csv(leaderboard_table_file)
108
+ model_table_df = pd.DataFrame(data)
109
+ md_head = f"""
110
+ # πŸ† OCRBench Leaderboard
111
+ | [GitHub](https://github.com/Yuliang-Liu/MultimodalOCR) | [Paper](https://arxiv.org/abs/2305.07895) |
112
+ """
113
+ gr.Markdown(md_head, elem_id="leaderboard_markdown")
114
+ with gr.Tabs() as tabs:
115
+ # arena table
116
+ arena_table_vals = get_arena_table(model_table_df)
117
+ with gr.Tab("OCRBench", id=0):
118
+ md = "OCRBench is a comprehensive evaluation benchmark designed to assess the OCR capabilities of Large Multimodal Models. It comprises five components: Text Recognition, SceneText-Centric VQA, Document-Oriented VQA, Key Information Extraction, and Handwritten Mathematical Expression Recognition. The benchmark includes 1000 question-answer pairs, and all the answers undergo manual verification and correction to ensure a more precise evaluation."
119
+ gr.Markdown(md, elem_id="leaderboard_markdown")
120
+ gr.Dataframe(
121
+ headers=[
122
+ "Rank",
123
+ "Name",
124
+ "Text Recognition",
125
+ "Scene Text-Centric VQA",
126
+ "Doc-Oriented VQA",
127
+ "KIE",
128
+ "HMER",
129
+ "Final Score",
130
+ ],
131
+ datatype=[
132
+ "str",
133
+ "markdown",
134
+ "number",
135
+ "number",
136
+ "number",
137
+ "number",
138
+ "number",
139
+ "number",
140
+ ],
141
+ value=arena_table_vals,
142
+ elem_id="arena_leaderboard_dataframe",
143
+ height=700,
144
+ column_widths=[60, 120, 150, 200, 180, 80, 80, 160],
145
+ wrap=True,
146
+ )
147
+ else:
148
+ pass
149
+ md_tail = f"""
150
+ # Notice
151
+ If you would like to include your model in the OCRBench leaderboard, please follow the evaluation instructions provided on [GitHub](https://github.com/Yuliang-Liu/MultimodalOCR) and feel free to contact us via email at [email protected]. We will update the leaderboard in time."""
152
+ gr.Markdown(md_tail, elem_id="leaderboard_markdown")
153
+
154
+ def build_demo(leaderboard_table_file):
155
+ text_size = gr.themes.sizes.text_lg
156
+
157
+ with gr.Blocks(
158
+ title="OCRBench Leaderboard",
159
+ theme=gr.themes.Base(text_size=text_size),
160
+ css=block_css,
161
+ ) as demo:
162
+ leader_components = build_leaderboard_tab(
163
+ leaderboard_table_file, show_plot=True
164
+ )
165
+ return demo
166
+
167
+ if __name__ == "__main__":
168
+ parser = argparse.ArgumentParser()
169
+ parser.add_argument("--share", action="store_true")
170
+ parser.add_argument("--OCRBench_file", type=str, default="/home/zhangli/lz/OCRBench/OCRBench.csv")
171
+ args = parser.parse_args()
172
+
173
+ demo = build_demo(args.OCRBench_file)
174
+ demo.launch(server_name="0.0.0.0",server_port=7682)