Spaces:
Runtime error
Runtime error
File size: 3,701 Bytes
7200ed6 147252c ca6df07 fd234e5 57f10fe efe7912 6168534 57f10fe bfb2154 1c477d1 a293459 1c477d1 997b388 bb41c4b 07cda62 fd234e5 71b294c fd234e5 997b388 50c03f6 f995681 1c9438b 3a698b7 1c9438b 3a698b7 06e2e1e a562d9c 06e2e1e a600c86 3a698b7 43a1db0 3a698b7 43a1db0 3a698b7 a562d9c bfb2154 3a698b7 1c9438b 3a698b7 1c9438b 3a698b7 d167f12 3a698b7 a8ed030 3a698b7 a8ed030 3a698b7 0663b51 bb7cbf1 3a698b7 147252c 3a698b7 c055605 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
import os
import gradio as gr
from textwrap import dedent
import google.generativeai as genai
# Tool import
from crewai.tools.gemini_tools import GeminiSearchTools
from langchain.tools.yahoo_finance_news import YahooFinanceNewsTool
from crewai.tools.browser_tools import BrowserTools
from crewai.tools.sec_tools import SECTools
# Google Langchain
from langchain_google_genai import GoogleGenerativeAI
#Crew imports
from crewai import Agent, Task, Crew, Process
# Retrieve API Key from Environment Variable
GOOGLE_AI_STUDIO = os.environ.get('GOOGLE_API_KEY')
# Ensure the API key is available
if not GOOGLE_AI_STUDIO:
raise ValueError("API key not found. Please set the GOOGLE_AI_STUDIO2 environment variable.")
# Set gemini_llm
gemini_llm = GoogleGenerativeAI(model="gemini-pro", google_api_key=GOOGLE_AI_STUDIO)
# Base Example with Gemini Search
def crewai_process(research_topic):
# Define your agents with roles and goals
researcher = Agent(
role='Senior Research Analyst',
goal=f'Uncover cutting-edge developments in {research_topic}',
backstory="""You are a Senior Research Analyst at a leading think tank.
Your expertise lies in identifying emerging trends. You have a knack for dissecting complex data and presenting
actionable insights.""",
verbose=True,
allow_delegation=False,
llm = gemini_llm,
tools=[
GeminiSearchTools.gemini_search
]
)
writer = Agent(
role='Tech Content Strategist',
goal='Craft compelling content on tech advancements',
backstory="""You are a renowned Tech Social Media Content Writer and Strategist, known for your insightful
and engaging articles on technology and innovation. With a deep understanding of
the tech industry and how people are impacted by it, you transform complex concepts into compelling narratives.""",
verbose=True,
allow_delegation=True,
llm = gemini_llm
# Add tools and other optional parameters as needed
)
# Create tasks for your agents
task1 = Task(
description=f"""Conduct a comprehensive analysis of the latest advancements in {research_topic}.
Compile your findings in a detailed report. Your final answer MUST be a full analysis report""",
agent=researcher
)
task2 = Task(
description="""Using the insights from the researcher's report, develop an engaging blog
post that highlights the most significant advancements.
Your post should be informative yet accessible, catering to a tech-savvy audience.
Aim for a narrative that captures the essence of these breakthroughs and their
implications for the future. Your final answer MUST be the full blog post of at least 3 paragraphs.""",
agent=writer
)
# Instantiate your crew with a sequential process
crew = Crew(
agents=[researcher, writer],
tasks=[task1, task2],
verbose=2,
process=Process.sequential
)
# Get your crew to work!
result = crew.kickoff()
return result
# Create a Gradio interface
iface = gr.Interface(
fn=crewai_process,
inputs=gr.Textbox(lines=2, placeholder="Enter Research Topic Here..."),
outputs="text",
title="CrewAI on Gemini (Blog Post Writer)",
description="Input a research topic to get a comprehensive analysis (in logs) and a blog post draft (in output). To learn more connect with Mike Lively on LinkedIn at https://www.linkedin.com/in/awsmulticloud/ or join his cloud Meetup at https://www.meetup.com/florence-aws-user-group-meetup/"
)
# Launch the interface
iface.launch()
|