Spaces:
Sleeping
Sleeping
main
Browse files
main.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
import uvicorn
|
3 |
+
from typing import List, Literal, Optional
|
4 |
+
from pydantic import BaseModel
|
5 |
+
import pandas as pd
|
6 |
+
import pickle
|
7 |
+
import os
|
8 |
+
import json
|
9 |
+
import logging
|
10 |
+
|
11 |
+
# logger = logging.getLogger(__name__)
|
12 |
+
logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.DEBUG)
|
13 |
+
|
14 |
+
# logging.debug('This is a debug message')
|
15 |
+
# logging.info('This is an info message')
|
16 |
+
# logging.warning('This is a warning message')
|
17 |
+
# logging.error('This is an error message')
|
18 |
+
# logging.critical('This is a critical message')
|
19 |
+
|
20 |
+
|
21 |
+
# Util Functions & Classes
|
22 |
+
def loading(fp):
|
23 |
+
with open(fp, "rb") as f:
|
24 |
+
data = pickle.load(f)
|
25 |
+
|
26 |
+
print(f"INFO: Loaded data : {data}")
|
27 |
+
return data
|
28 |
+
|
29 |
+
|
30 |
+
def predict(df, endpoint="simple"):
|
31 |
+
"""Take a dataframe as input and use it to make predictions"""
|
32 |
+
|
33 |
+
print(
|
34 |
+
f"[Info] 'predict' function has been called through the endpoint '{endpoint}'.\n"
|
35 |
+
)
|
36 |
+
|
37 |
+
logging.info(f" \n{df.to_markdown()}")
|
38 |
+
|
39 |
+
# scaling
|
40 |
+
scaled_df = scaler.transform(df)
|
41 |
+
logging.info(f" Scaler output is of type {type(scaled_df)}")
|
42 |
+
|
43 |
+
# prediction
|
44 |
+
prediction = model.predict_proba(scaled_df)
|
45 |
+
print(f"INFO: Prediction output: {prediction}")
|
46 |
+
|
47 |
+
# Formatting of the prediction
|
48 |
+
## extract highest proba
|
49 |
+
highest_proba = prediction.max(axis=1)
|
50 |
+
print(f"INFO: Highest probabilities : {highest_proba}")
|
51 |
+
|
52 |
+
## extract indexes of the highest proba
|
53 |
+
highest_proba_idx = prediction.argmax(axis=1)
|
54 |
+
print(f"INFO: Highest probability indexes : {highest_proba_idx}")
|
55 |
+
|
56 |
+
## Maching prediction with classes
|
57 |
+
predicted_classes = [labels[i] for i in highest_proba_idx]
|
58 |
+
print(f"INFO: Predicted classes : {predicted_classes}")
|
59 |
+
# prediction[:, highest_proba_idx]
|
60 |
+
|
61 |
+
# save in df
|
62 |
+
df["predicted proba"] = highest_proba
|
63 |
+
df["predicted label"] = predicted_classes
|
64 |
+
|
65 |
+
print(f"INFO: dataframe filled with prediction\n{df.to_markdown()}\n")
|
66 |
+
|
67 |
+
# parsing prediction
|
68 |
+
# parsed = json.loads(df.to_json(orient="index")) # or
|
69 |
+
parsed = df.to_dict("records")
|
70 |
+
|
71 |
+
return parsed
|
72 |
+
|
73 |
+
|
74 |
+
## INPUT MODELING
|
75 |
+
class Land(BaseModel):
|
76 |
+
"""Modeling of one input data in a type-restricted dictionary-like format
|
77 |
+
|
78 |
+
column_name : variable type # strictly respect the name in the dataframe header.
|
79 |
+
|
80 |
+
eg.:
|
81 |
+
=========
|
82 |
+
customer_age : int
|
83 |
+
gender : Literal['male', 'female', 'other']
|
84 |
+
"""
|
85 |
+
|
86 |
+
N: float
|
87 |
+
P: float
|
88 |
+
K: float
|
89 |
+
temperature: float
|
90 |
+
humidity: float
|
91 |
+
ph: float
|
92 |
+
rainfall: float
|
93 |
+
|
94 |
+
|
95 |
+
class Lands(BaseModel):
|
96 |
+
inputs: List[Land]
|
97 |
+
|
98 |
+
def return_list_of_dict(
|
99 |
+
cls,
|
100 |
+
):
|
101 |
+
# return [land.dict() for land in cls.inputs]
|
102 |
+
return [i.dict() for i in cls.inputs]
|
103 |
+
|
104 |
+
|
105 |
+
# API
|
106 |
+
app = FastAPI(title="API")
|
107 |
+
ml_objects = loading(fp=os.path.join("assets", "ml", "crop_recommandation2.pkl"))
|
108 |
+
## Extract the ml components
|
109 |
+
model = ml_objects["model"]
|
110 |
+
scaler = ml_objects["scaler"].set_output(transform="pandas")
|
111 |
+
labels = ml_objects["labels"]
|
112 |
+
# = ml_objects[""]
|
113 |
+
|
114 |
+
|
115 |
+
# Endpoints
|
116 |
+
@app.get("/")
|
117 |
+
def root():
|
118 |
+
return {"API": " This is an API to ... ."}
|
119 |
+
|
120 |
+
|
121 |
+
@app.get("/checkup")
|
122 |
+
def test(a: Optional[int], b: int):
|
123 |
+
return {"a": a, "b": b}
|
124 |
+
|
125 |
+
|
126 |
+
## ML endpoint
|
127 |
+
@app.post("/predict")
|
128 |
+
def make_prediction(
|
129 |
+
N: float,
|
130 |
+
P: float,
|
131 |
+
K: float,
|
132 |
+
temperature: float,
|
133 |
+
humidity: float,
|
134 |
+
ph: float,
|
135 |
+
rainfall: float,
|
136 |
+
):
|
137 |
+
"""Make prediction with the passed data"""
|
138 |
+
|
139 |
+
df = pd.DataFrame(
|
140 |
+
{
|
141 |
+
"N": [N],
|
142 |
+
"P": [P],
|
143 |
+
"K": [K],
|
144 |
+
"temperature": [temperature],
|
145 |
+
"humidity": [humidity],
|
146 |
+
"ph": [ph],
|
147 |
+
"rainfall": [rainfall],
|
148 |
+
}
|
149 |
+
)
|
150 |
+
|
151 |
+
parsed = predict(df=df) # df.to_dict('records')
|
152 |
+
|
153 |
+
return {
|
154 |
+
"output": parsed,
|
155 |
+
}
|
156 |
+
|
157 |
+
|
158 |
+
@app.post("/predict_multi")
|
159 |
+
def make_multi_prediction(multi_lands: Lands):
|
160 |
+
"""Make prediction with the passed data"""
|
161 |
+
print(f"Mutiple inputs passed: {multi_lands}\n")
|
162 |
+
df = pd.DataFrame(multi_lands.return_list_of_dict())
|
163 |
+
|
164 |
+
parsed = predict(df=df, endpoint="multi inputs") # df.to_dict('records')
|
165 |
+
|
166 |
+
return {
|
167 |
+
"output": parsed,
|
168 |
+
"author": "Stella Archar",
|
169 |
+
"api_version": ";)",
|
170 |
+
}
|
171 |
+
|
172 |
+
|
173 |
+
if __name__ == "__main__":
|
174 |
+
uvicorn.run("main:app", reload=True)
|