Spaces:
Sleeping
Sleeping
init
Browse files- .gitignore +5 -0
- .gitkeep +0 -0
- __init__.py +0 -0
- article/.gitkeep +0 -0
- img/.gitkeep +0 -0
- main.py +33 -0
- main_sentiment.py +58 -0
- notebook/.gitkeep +0 -0
- requirements.txt +8 -0
- src/.gitkeep +0 -0
- src/__init__.py +0 -0
- src/main.py +33 -0
- src/main_sentiment.py +58 -0
- src/utils.py +18 -0
- utils.py +18 -0
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
venv/
|
2 |
+
env/
|
3 |
+
.venv/
|
4 |
+
.env/
|
5 |
+
.env
|
.gitkeep
ADDED
File without changes
|
__init__.py
ADDED
File without changes
|
article/.gitkeep
ADDED
File without changes
|
img/.gitkeep
ADDED
File without changes
|
main.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Union
|
2 |
+
from src.utils import make_incredible_predictions
|
3 |
+
from fastapi import FastAPI
|
4 |
+
|
5 |
+
app = FastAPI()
|
6 |
+
# /docs, page to see auto-generated API documentation
|
7 |
+
|
8 |
+
@app.get("/")
|
9 |
+
def read_root():
|
10 |
+
return {"Hello": "World", "cohort": "2"}
|
11 |
+
|
12 |
+
|
13 |
+
@app.get("/items/{item_id}")
|
14 |
+
def read_item(item_id: int, q: Union[str, None] = None):
|
15 |
+
return {"item_id": item_id, "q": q}
|
16 |
+
|
17 |
+
@app.get("/predict")
|
18 |
+
def predict(age, salary, dependentsNumber, gender):
|
19 |
+
prediction = None
|
20 |
+
# prediction = model.predict(pd.DataFrame([age, salary, dependents_number, gender]))
|
21 |
+
return {"age":age,
|
22 |
+
"salary":salary,
|
23 |
+
"dependents_number":dependentsNumber,
|
24 |
+
"gender":gender,"prediction":prediction}
|
25 |
+
|
26 |
+
@app.post("/predict")
|
27 |
+
def predict(age, salary, dependentsNumber, gender):
|
28 |
+
prediction = None
|
29 |
+
# prediction = model.predict(pd.DataFrame([age, salary, dependents_number, gender]))
|
30 |
+
return {"age":age,
|
31 |
+
"salary":salary,
|
32 |
+
"dependents_number":dependentsNumber,
|
33 |
+
"gender":gender,"prediction":prediction}
|
main_sentiment.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Imports
|
2 |
+
import sys
|
3 |
+
# sys.path.insert(0, '../src/')
|
4 |
+
# sys.path.insert(0, '../src')
|
5 |
+
# sys.path.insert(0, 'src/')
|
6 |
+
# sys.path.insert(0, 'src')
|
7 |
+
|
8 |
+
from typing import Union
|
9 |
+
from src.utils import preprocess
|
10 |
+
from fastapi import FastAPI
|
11 |
+
from transformers import AutoModelForSequenceClassification,AutoTokenizer, AutoConfig
|
12 |
+
import numpy as np
|
13 |
+
#convert logits to probabilities
|
14 |
+
from scipy.special import softmax
|
15 |
+
|
16 |
+
# Config
|
17 |
+
|
18 |
+
app = FastAPI()
|
19 |
+
#/docs, page to see auto-generated API documentation
|
20 |
+
|
21 |
+
#loading ML/DL components
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained('bert-base-cased')
|
23 |
+
model_path = f"Junr-syl/tweet_sentiments_analysis"
|
24 |
+
config = AutoConfig.from_pretrained(model_path)
|
25 |
+
config.id2label = {0: 'NEGATIVE', 1: 'NEUTRAL', 2: 'POSITIVE'}
|
26 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
27 |
+
|
28 |
+
# Endpoints
|
29 |
+
@app.get("/")
|
30 |
+
def read_root():
|
31 |
+
"Home endpoint"
|
32 |
+
return {"greeting": "Hello World..!",
|
33 |
+
"cohort": "2",
|
34 |
+
}
|
35 |
+
|
36 |
+
@app.post("/predict")
|
37 |
+
def predict(text:str):
|
38 |
+
"prediction endpoint, classifying tweets"
|
39 |
+
|
40 |
+
text = preprocess(text)
|
41 |
+
|
42 |
+
# PyTorch-based models
|
43 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
44 |
+
output = model(**encoded_input)
|
45 |
+
scores = output[0][0].detach().numpy()
|
46 |
+
scores = softmax(scores)
|
47 |
+
|
48 |
+
#Process scores
|
49 |
+
ranking = np.argsort(scores)
|
50 |
+
ranking = ranking[::-1]
|
51 |
+
predicted_label = config.id2label[ranking[0]]
|
52 |
+
predicted_score = scores[ranking[0]]
|
53 |
+
|
54 |
+
|
55 |
+
return {"text":text,
|
56 |
+
"predicted_label":predicted_label,
|
57 |
+
"confidence_score":predicted_score
|
58 |
+
}
|
notebook/.gitkeep
ADDED
File without changes
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
jupyter
|
2 |
+
pandas
|
3 |
+
scikit-learn
|
4 |
+
fastapi[all]
|
5 |
+
transformers
|
6 |
+
torch
|
7 |
+
seaborn
|
8 |
+
plotly
|
src/.gitkeep
ADDED
File without changes
|
src/__init__.py
ADDED
File without changes
|
src/main.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Union
|
2 |
+
from src.utils import make_incredible_predictions
|
3 |
+
from fastapi import FastAPI
|
4 |
+
|
5 |
+
app = FastAPI()
|
6 |
+
# /docs, page to see auto-generated API documentation
|
7 |
+
|
8 |
+
@app.get("/")
|
9 |
+
def read_root():
|
10 |
+
return {"Hello": "World", "cohort": "2"}
|
11 |
+
|
12 |
+
|
13 |
+
@app.get("/items/{item_id}")
|
14 |
+
def read_item(item_id: int, q: Union[str, None] = None):
|
15 |
+
return {"item_id": item_id, "q": q}
|
16 |
+
|
17 |
+
@app.get("/predict")
|
18 |
+
def predict(age, salary, dependentsNumber, gender):
|
19 |
+
prediction = None
|
20 |
+
# prediction = model.predict(pd.DataFrame([age, salary, dependents_number, gender]))
|
21 |
+
return {"age":age,
|
22 |
+
"salary":salary,
|
23 |
+
"dependents_number":dependentsNumber,
|
24 |
+
"gender":gender,"prediction":prediction}
|
25 |
+
|
26 |
+
@app.post("/predict")
|
27 |
+
def predict(age, salary, dependentsNumber, gender):
|
28 |
+
prediction = None
|
29 |
+
# prediction = model.predict(pd.DataFrame([age, salary, dependents_number, gender]))
|
30 |
+
return {"age":age,
|
31 |
+
"salary":salary,
|
32 |
+
"dependents_number":dependentsNumber,
|
33 |
+
"gender":gender,"prediction":prediction}
|
src/main_sentiment.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Imports
|
2 |
+
import sys
|
3 |
+
# sys.path.insert(0, '../src/')
|
4 |
+
# sys.path.insert(0, '../src')
|
5 |
+
# sys.path.insert(0, 'src/')
|
6 |
+
# sys.path.insert(0, 'src')
|
7 |
+
|
8 |
+
from typing import Union
|
9 |
+
from src.utils import preprocess
|
10 |
+
from fastapi import FastAPI
|
11 |
+
from transformers import AutoModelForSequenceClassification,AutoTokenizer, AutoConfig
|
12 |
+
import numpy as np
|
13 |
+
#convert logits to probabilities
|
14 |
+
from scipy.special import softmax
|
15 |
+
|
16 |
+
# Config
|
17 |
+
|
18 |
+
app = FastAPI()
|
19 |
+
#/docs, page to see auto-generated API documentation
|
20 |
+
|
21 |
+
#loading ML/DL components
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained('bert-base-cased')
|
23 |
+
model_path = f"Junr-syl/tweet_sentiments_analysis"
|
24 |
+
config = AutoConfig.from_pretrained(model_path)
|
25 |
+
config.id2label = {0: 'NEGATIVE', 1: 'NEUTRAL', 2: 'POSITIVE'}
|
26 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
27 |
+
|
28 |
+
# Endpoints
|
29 |
+
@app.get("/")
|
30 |
+
def read_root():
|
31 |
+
"Home endpoint"
|
32 |
+
return {"greeting": "Hello World..!",
|
33 |
+
"cohort": "2",
|
34 |
+
}
|
35 |
+
|
36 |
+
@app.post("/predict")
|
37 |
+
def predict(text:str):
|
38 |
+
"prediction endpoint, classifying tweets"
|
39 |
+
|
40 |
+
text = preprocess(text)
|
41 |
+
|
42 |
+
# PyTorch-based models
|
43 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
44 |
+
output = model(**encoded_input)
|
45 |
+
scores = output[0][0].detach().numpy()
|
46 |
+
scores = softmax(scores)
|
47 |
+
|
48 |
+
#Process scores
|
49 |
+
ranking = np.argsort(scores)
|
50 |
+
ranking = ranking[::-1]
|
51 |
+
predicted_label = config.id2label[ranking[0]]
|
52 |
+
predicted_score = scores[ranking[0]]
|
53 |
+
|
54 |
+
|
55 |
+
return {"text":text,
|
56 |
+
"predicted_label":predicted_label,
|
57 |
+
"confidence_score":predicted_score
|
58 |
+
}
|
src/utils.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def make_incredible_predictions():
|
2 |
+
"This is the best function that have created"
|
3 |
+
pass
|
4 |
+
|
5 |
+
def preprocess(text):
|
6 |
+
"preprocessing function of the input tweet"
|
7 |
+
|
8 |
+
new_text = []#initiate an empty list
|
9 |
+
#split text by space
|
10 |
+
for t in text.split(" "):
|
11 |
+
#set username to @user
|
12 |
+
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
13 |
+
#set tweet source to http
|
14 |
+
t = 'http' if t.startswith('http') else t
|
15 |
+
#store text in the list
|
16 |
+
new_text.append(t)
|
17 |
+
#change text from list back to string
|
18 |
+
return " ".join(new_text)
|
utils.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def make_incredible_predictions():
|
2 |
+
"This is the best function that have created"
|
3 |
+
pass
|
4 |
+
|
5 |
+
def preprocess(text):
|
6 |
+
"preprocessing function of the input tweet"
|
7 |
+
|
8 |
+
new_text = []#initiate an empty list
|
9 |
+
#split text by space
|
10 |
+
for t in text.split(" "):
|
11 |
+
#set username to @user
|
12 |
+
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
13 |
+
#set tweet source to http
|
14 |
+
t = 'http' if t.startswith('http') else t
|
15 |
+
#store text in the list
|
16 |
+
new_text.append(t)
|
17 |
+
#change text from list back to string
|
18 |
+
return " ".join(new_text)
|