Spaces:
Runtime error
Runtime error
dynamicmortal
commited on
Commit
β’
e0ca454
1
Parent(s):
ab2b2f2
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, render_template, request, jsonify
|
2 |
+
import torch
|
3 |
+
from transformers import pipeline
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
app = Flask(__name__)
|
7 |
+
|
8 |
+
# Load the automatic speech recognition model
|
9 |
+
pipe = pipeline("automatic-speech-recognition",
|
10 |
+
"openai/whisper-large-v3",
|
11 |
+
torch_dtype=torch.float16,
|
12 |
+
device="cuda:0")
|
13 |
+
|
14 |
+
# Load the emotion classification model
|
15 |
+
emotion_classifier = pipeline(
|
16 |
+
"text-classification",
|
17 |
+
model="j-hartmann/emotion-english-distilroberta-base",
|
18 |
+
return_all_scores=True
|
19 |
+
)
|
20 |
+
|
21 |
+
def transcribe(audio_file, task):
|
22 |
+
if audio_file is None:
|
23 |
+
return "Please upload or record an audio file."
|
24 |
+
|
25 |
+
# Check if the audio file is in bytes format (drag-and-drop file)
|
26 |
+
if isinstance(audio_file, bytes):
|
27 |
+
text = pipe(audio_file, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
28 |
+
else:
|
29 |
+
# Handle the case where the file is uploaded using the file uploader
|
30 |
+
text = pipe(audio_file.name, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
31 |
+
|
32 |
+
return text
|
33 |
+
|
34 |
+
@app.route('/')
|
35 |
+
def index():
|
36 |
+
return render_template('index.html')
|
37 |
+
|
38 |
+
@app.route('/transcribe', methods=['POST'])
|
39 |
+
def transcribe_endpoint():
|
40 |
+
audio_file = request.files.get('audio_file')
|
41 |
+
task = request.form.get('task')
|
42 |
+
text = transcribe(audio_file, task)
|
43 |
+
return jsonify({'text': text})
|
44 |
+
|
45 |
+
@app.route('/classify_emotion', methods=['POST'])
|
46 |
+
def classify_emotion_endpoint():
|
47 |
+
text = request.form.get('text')
|
48 |
+
result = emotion_classifier(text)
|
49 |
+
return jsonify(result)
|
50 |
+
|
51 |
+
if __name__ == '__main__':
|
52 |
+
app.run(debug=True)
|