Spaces:
Sleeping
Sleeping
File size: 10,280 Bytes
2a046f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import argparse
import logging
from threading import Thread
import time
import torch
import gradio as gr
from concept_guidance.chat_template import DEFAULT_CHAT_TEMPLATE
from concept_guidance.patching import patch_model, load_weights
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, TextIteratorStreamer, Conversation
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# device = "cpu"
MODEL_CONFIGS = {
"Llama-2-7b-chat-hf": {
"identifier": "meta-llama/Llama-2-7b-chat-hf",
"dtype": torch.float16 if device.type == "cuda" else torch.float32,
"guidance_interval": [-16.0, 16.0],
"default_guidance_scale": 8.0,
"min_guidance_layer": 16,
"max_guidance_layer": 32,
"default_concept": "humor",
"concepts": ["humor", "creativity", "quality", "truthfulness", "compliance"],
},
"Mistral-7B-Instruct-v0.1": {
"identifier": "mistralai/Mistral-7B-Instruct-v0.1",
"dtype": torch.bfloat16 if device.type == "cuda" else torch.float32,
"guidance_interval": [-128.0, 128.0],
"default_guidance_scale": 48.0,
"min_guidance_layer": 8,
"max_guidance_layer": 32,
"default_concept": "humor",
"concepts": ["humor", "creativity", "quality", "truthfulness", "compliance"],
},
}
def load_concept_vectors(model, concepts):
return {concept: load_weights(f"trained_concepts/{model}/{concept}.safetensors") for concept in concepts}
def load_model(model_name):
config = MODEL_CONFIGS[model_name]
model = AutoModelForCausalLM.from_pretrained(config["identifier"], torch_dtype=config["dtype"])
tokenizer = AutoTokenizer.from_pretrained(config["identifier"])
if tokenizer.chat_template is None:
tokenizer.chat_template = DEFAULT_CHAT_TEMPLATE
return model, tokenizer
CONCEPTS = ["humor", "creativity", "quality", "truthfulness", "compliance"]
CONCEPT_VECTORS = {model_name: load_concept_vectors(model_name, CONCEPTS) for model_name in MODEL_CONFIGS}
MODELS = {model_name: load_model(model_name) for model_name in MODEL_CONFIGS}
def history_to_conversation(history):
conversation = Conversation()
for prompt, completion in history:
conversation.add_message({"role": "user", "content": prompt})
if completion is not None:
conversation.add_message({"role": "assistant", "content": completion})
return conversation
def set_defaults(model_name):
config = MODEL_CONFIGS[model_name]
return (
model_name,
gr.update(choices=config["concepts"], value=config["concepts"][0]),
gr.update(minimum=config["guidance_interval"][0], maximum=config["guidance_interval"][1], value=config["default_guidance_scale"]),
gr.update(value=config["min_guidance_layer"]),
gr.update(value=config["max_guidance_layer"]),
)
def add_user_prompt(user_message, history):
if history is None:
history = []
history.append([user_message, None])
return history
@torch.no_grad()
def generate_completion(
history,
model_name,
concept,
guidance_scale=4.0,
min_guidance_layer=16,
max_guidance_layer=32,
temperature=0.0,
repetition_penalty=1.2,
length_penalty=1.2,
):
start_time = time.time()
logger.info(f" --- Starting completion ({model_name}, {concept=}, {guidance_scale=}, {min_guidance_layer=}, {temperature=})")
logger.info(" User: " + repr(history[-1][0]))
# move all other models to CPU
for name, (model, _) in MODELS.items():
if name != model_name:
model.to("cpu")
torch.cuda.empty_cache()
# load the model
model, tokenizer = MODELS[model_name]
model = model.to(device, non_blocking=True)
concept_vector = CONCEPT_VECTORS[model_name][concept]
guidance_layers = list(range(int(min_guidance_layer) - 1, int(max_guidance_layer)))
patch_model(model, concept_vector, guidance_scale=guidance_scale, guidance_layers=guidance_layers)
pipe = pipeline("conversational", model=model, tokenizer=tokenizer, device=device)
conversation = history_to_conversation(history)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(
max_new_tokens=512,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
streamer=streamer,
temperature=temperature,
do_sample=(temperature > 0)
)
thread = Thread(target=pipe, args=(conversation,), kwargs=generation_kwargs, daemon=True)
thread.start()
history[-1][1] = ""
for token in streamer:
history[-1][1] += token
yield history
logger.info(" Assistant: " + repr(history[-1][1]))
time_taken = time.time() - start_time
logger.info(f" --- Completed (took {time_taken:.1f}s)")
return history
class ConceptGuidanceUI:
def __init__(self):
model_names = list(MODEL_CONFIGS.keys())
default_model = model_names[0]
default_config = MODEL_CONFIGS[default_model]
default_concepts = default_config["concepts"]
saved_input = gr.State("")
with gr.Row(elem_id="concept-guidance-container"):
with gr.Column(scale=1, min_width=256):
model_dropdown = gr.Dropdown(model_names, value=default_model, label="Model")
concept_dropdown = gr.Dropdown(default_concepts, value=default_concepts[0], label="Concept")
guidance_scale = gr.Slider(*default_config["guidance_interval"], value=default_config["default_guidance_scale"], label="Guidance Scale")
min_guidance_layer = gr.Slider(1.0, 32.0, value=16.0, step=1.0, label="First Guidance Layer")
max_guidance_layer = gr.Slider(1.0, 32.0, value=32.0, step=1.0, label="Last Guidance Layer")
temperature = gr.Slider(0.0, 1.0, value=0.0, step=0.01, label="Temperature")
repetition_penalty = gr.Slider(1.0, 2.0, value=1.2, step=0.01, label="Repetition Penalty")
length_penalty = gr.Slider(0.0, 2.0, value=1.2, step=0.01, label="Length Penalty")
with gr.Column(scale=3, min_width=512):
chatbot = gr.Chatbot(scale=1, height=200)
with gr.Row():
self.retry_btn = gr.Button("🔄 Retry", size="sm")
self.undo_btn = gr.Button("↩️ Undo", size="sm")
self.clear_btn = gr.Button("🗑️ Clear", size="sm")
with gr.Group():
with gr.Row():
prompt_field = gr.Textbox(placeholder="Type a message...", show_label=False, label="Message", scale=7, container=False)
self.submit_btn = gr.Button("Submit", variant="primary", scale=1, min_width=150)
self.stop_btn = gr.Button("Stop", variant="secondary", scale=1, min_width=150, visible=False)
generation_args = [
model_dropdown,
concept_dropdown,
guidance_scale,
min_guidance_layer,
max_guidance_layer,
temperature,
repetition_penalty,
length_penalty,
]
model_dropdown.change(set_defaults, [model_dropdown], [model_dropdown, concept_dropdown, guidance_scale, min_guidance_layer, max_guidance_layer], queue=False)
submit_triggers = [prompt_field.submit, self.submit_btn.click]
submit_event = gr.on(
submit_triggers, self.clear_and_save_input, [prompt_field], [prompt_field, saved_input], queue=False
).then(
add_user_prompt, [saved_input, chatbot], [chatbot], queue=False
).then(
generate_completion,
[chatbot] + generation_args,
[chatbot],
concurrency_limit=1,
)
self.setup_stop_events(submit_triggers, submit_event)
retry_triggers = [self.retry_btn.click]
retry_event = gr.on(
retry_triggers, self.delete_prev_message, [chatbot], [chatbot, saved_input], queue=False
).then(
add_user_prompt, [saved_input, chatbot], [chatbot], queue=False
).then(
generate_completion,
[chatbot] + generation_args,
[chatbot],
concurrency_limit=1,
)
self.setup_stop_events(retry_triggers, retry_event)
self.undo_btn.click(
self.delete_prev_message, [chatbot], [chatbot, saved_input], queue=False
).then(
lambda x: x, [saved_input], [prompt_field]
)
self.clear_btn.click(lambda: [None, None], None, [chatbot, saved_input], queue=False)
def clear_and_save_input(self, message):
return "", message
def delete_prev_message(self, history):
message, _ = history.pop()
return history, message or ""
def setup_stop_events(self, event_triggers, event_to_cancel):
if self.submit_btn:
for event_trigger in event_triggers:
event_trigger(
lambda: (
gr.Button(visible=False),
gr.Button(visible=True),
),
None,
[self.submit_btn, self.stop_btn],
show_api=False,
queue=False,
)
event_to_cancel.then(
lambda: (gr.Button(visible=True), gr.Button(visible=False)),
None,
[self.submit_btn, self.stop_btn],
show_api=False,
queue=False,
)
self.stop_btn.click(
None,
None,
None,
cancels=event_to_cancel,
show_api=False,
)
css = """
#concept-guidance-container {
flex-grow: 1;
}
""".strip()
with gr.Blocks(title="Concept Guidance", fill_height=True, css=css) as demo:
ConceptGuidanceUI()
demo.queue()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true")
args = parser.parse_args()
demo.launch(share=args.share) |