File size: 10,280 Bytes
2a046f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import argparse
import logging
from threading import Thread

import time
import torch
import gradio as gr
from concept_guidance.chat_template import DEFAULT_CHAT_TEMPLATE
from concept_guidance.patching import patch_model, load_weights
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, TextIteratorStreamer, Conversation

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# device = "cpu"

MODEL_CONFIGS = {
    "Llama-2-7b-chat-hf": {
        "identifier": "meta-llama/Llama-2-7b-chat-hf",
        "dtype": torch.float16 if device.type == "cuda" else torch.float32,
        "guidance_interval": [-16.0, 16.0],
        "default_guidance_scale": 8.0,
        "min_guidance_layer": 16,
        "max_guidance_layer": 32,
        "default_concept": "humor",
        "concepts": ["humor", "creativity", "quality", "truthfulness", "compliance"],
    },
    "Mistral-7B-Instruct-v0.1": {
        "identifier": "mistralai/Mistral-7B-Instruct-v0.1",
        "dtype": torch.bfloat16 if device.type == "cuda" else torch.float32,
        "guidance_interval": [-128.0, 128.0],
        "default_guidance_scale": 48.0,
        "min_guidance_layer": 8,
        "max_guidance_layer": 32,
        "default_concept": "humor",
        "concepts": ["humor", "creativity", "quality", "truthfulness", "compliance"],
    },
}

def load_concept_vectors(model, concepts):
    return {concept: load_weights(f"trained_concepts/{model}/{concept}.safetensors") for concept in concepts}

def load_model(model_name):
    config = MODEL_CONFIGS[model_name]
    model = AutoModelForCausalLM.from_pretrained(config["identifier"], torch_dtype=config["dtype"])
    tokenizer = AutoTokenizer.from_pretrained(config["identifier"])
    if tokenizer.chat_template is None:
        tokenizer.chat_template = DEFAULT_CHAT_TEMPLATE
    return model, tokenizer

CONCEPTS = ["humor", "creativity", "quality", "truthfulness", "compliance"]
CONCEPT_VECTORS = {model_name: load_concept_vectors(model_name, CONCEPTS) for model_name in MODEL_CONFIGS}
MODELS = {model_name: load_model(model_name) for model_name in MODEL_CONFIGS}


def history_to_conversation(history):
    conversation = Conversation()
    for prompt, completion in history:
        conversation.add_message({"role": "user", "content": prompt})
        if completion is not None:
            conversation.add_message({"role": "assistant", "content": completion})
    return conversation



def set_defaults(model_name):
    config = MODEL_CONFIGS[model_name]
    return (
        model_name,
        gr.update(choices=config["concepts"], value=config["concepts"][0]),
        gr.update(minimum=config["guidance_interval"][0], maximum=config["guidance_interval"][1], value=config["default_guidance_scale"]),
        gr.update(value=config["min_guidance_layer"]),
        gr.update(value=config["max_guidance_layer"]),
    )

def add_user_prompt(user_message, history):
    if history is None:
        history = []
    history.append([user_message, None])
    return history

@torch.no_grad()
def generate_completion(
    history,
    model_name,
    concept,
    guidance_scale=4.0,
    min_guidance_layer=16,
    max_guidance_layer=32,
    temperature=0.0,
    repetition_penalty=1.2,
    length_penalty=1.2,
):
    start_time = time.time()
    logger.info(f" --- Starting completion ({model_name}, {concept=}, {guidance_scale=}, {min_guidance_layer=}, {temperature=})") 
    logger.info(" User: " + repr(history[-1][0]))
    
    # move all other models to CPU
    for name, (model, _) in MODELS.items():
        if name != model_name:
            model.to("cpu")
    torch.cuda.empty_cache()
    # load the model
    model, tokenizer = MODELS[model_name]
    model = model.to(device, non_blocking=True)

    concept_vector = CONCEPT_VECTORS[model_name][concept]
    guidance_layers = list(range(int(min_guidance_layer) - 1, int(max_guidance_layer)))
    patch_model(model, concept_vector, guidance_scale=guidance_scale, guidance_layers=guidance_layers)
    pipe = pipeline("conversational", model=model, tokenizer=tokenizer, device=device)
    
    conversation = history_to_conversation(history)
    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

    generation_kwargs = dict(
        max_new_tokens=512,
        repetition_penalty=repetition_penalty,
        length_penalty=length_penalty,
        streamer=streamer,
        temperature=temperature,
        do_sample=(temperature > 0)
    )
    thread = Thread(target=pipe, args=(conversation,), kwargs=generation_kwargs, daemon=True)
    thread.start()

    history[-1][1] = ""
    for token in streamer:
        history[-1][1] += token
        yield history
    logger.info(" Assistant: " + repr(history[-1][1]))
    
    time_taken = time.time() - start_time
    logger.info(f" --- Completed (took {time_taken:.1f}s)")
    return history


class ConceptGuidanceUI:
    def __init__(self):
        model_names = list(MODEL_CONFIGS.keys())
        default_model = model_names[0]
        default_config = MODEL_CONFIGS[default_model]
        default_concepts = default_config["concepts"]

        saved_input = gr.State("")

        with gr.Row(elem_id="concept-guidance-container"):
            with gr.Column(scale=1, min_width=256):
                model_dropdown = gr.Dropdown(model_names, value=default_model, label="Model")
                concept_dropdown = gr.Dropdown(default_concepts, value=default_concepts[0], label="Concept")
                guidance_scale = gr.Slider(*default_config["guidance_interval"], value=default_config["default_guidance_scale"], label="Guidance Scale")
                min_guidance_layer = gr.Slider(1.0, 32.0, value=16.0, step=1.0, label="First Guidance Layer")
                max_guidance_layer = gr.Slider(1.0, 32.0, value=32.0, step=1.0, label="Last Guidance Layer")
                temperature = gr.Slider(0.0, 1.0, value=0.0, step=0.01, label="Temperature")
                repetition_penalty = gr.Slider(1.0, 2.0, value=1.2, step=0.01, label="Repetition Penalty")
                length_penalty = gr.Slider(0.0, 2.0, value=1.2, step=0.01, label="Length Penalty")

            with gr.Column(scale=3, min_width=512):
                chatbot = gr.Chatbot(scale=1, height=200)

                with gr.Row():
                    self.retry_btn = gr.Button("🔄 Retry", size="sm")
                    self.undo_btn = gr.Button("↩️ Undo", size="sm")
                    self.clear_btn = gr.Button("🗑️ Clear", size="sm")
                
                with gr.Group():
                    with gr.Row():
                        prompt_field = gr.Textbox(placeholder="Type a message...", show_label=False, label="Message", scale=7, container=False)
                        self.submit_btn = gr.Button("Submit", variant="primary", scale=1, min_width=150)
                        self.stop_btn = gr.Button("Stop", variant="secondary", scale=1, min_width=150, visible=False)

        generation_args = [
            model_dropdown,
            concept_dropdown,
            guidance_scale,
            min_guidance_layer,
            max_guidance_layer,
            temperature,
            repetition_penalty,
            length_penalty,
        ]

        model_dropdown.change(set_defaults, [model_dropdown], [model_dropdown, concept_dropdown, guidance_scale, min_guidance_layer, max_guidance_layer], queue=False)

        submit_triggers = [prompt_field.submit, self.submit_btn.click]
        submit_event = gr.on(
            submit_triggers, self.clear_and_save_input, [prompt_field], [prompt_field, saved_input], queue=False
        ).then(
            add_user_prompt, [saved_input, chatbot], [chatbot], queue=False
        ).then(
            generate_completion,
            [chatbot] + generation_args,
            [chatbot],
            concurrency_limit=1,
        )
        self.setup_stop_events(submit_triggers, submit_event)

        retry_triggers = [self.retry_btn.click]
        retry_event = gr.on(
            retry_triggers, self.delete_prev_message, [chatbot], [chatbot, saved_input], queue=False
        ).then(
            add_user_prompt, [saved_input, chatbot], [chatbot], queue=False
        ).then(
            generate_completion,
            [chatbot] + generation_args,
            [chatbot],
            concurrency_limit=1,
        )
        self.setup_stop_events(retry_triggers, retry_event)

        self.undo_btn.click(
            self.delete_prev_message, [chatbot], [chatbot, saved_input], queue=False
        ).then(
            lambda x: x, [saved_input], [prompt_field]
        )
        self.clear_btn.click(lambda: [None, None], None, [chatbot, saved_input], queue=False)

    def clear_and_save_input(self, message):
        return "", message
    
    def delete_prev_message(self, history):
        message, _ = history.pop()
        return history, message or ""

    def setup_stop_events(self, event_triggers, event_to_cancel):
        if self.submit_btn:
            for event_trigger in event_triggers:
                event_trigger(
                    lambda: (
                        gr.Button(visible=False),
                        gr.Button(visible=True),
                    ),
                    None,
                    [self.submit_btn, self.stop_btn],
                    show_api=False,
                    queue=False,
                )
            event_to_cancel.then(
                lambda: (gr.Button(visible=True), gr.Button(visible=False)),
                None,
                [self.submit_btn, self.stop_btn],
                show_api=False,
                queue=False,
            )

        self.stop_btn.click(
            None,
            None,
            None,
            cancels=event_to_cancel,
            show_api=False,
        )

css = """
#concept-guidance-container {
    flex-grow: 1;
}
""".strip()

with gr.Blocks(title="Concept Guidance", fill_height=True, css=css) as demo:
    ConceptGuidanceUI()

demo.queue()
if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--share", action="store_true")
    args = parser.parse_args()
    demo.launch(share=args.share)