ducknew commited on
Commit
354b9c7
·
1 Parent(s): b8f4d75

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -45
app.py CHANGED
@@ -14,13 +14,15 @@ from langchain.schema import Document
14
  from langchain.embeddings import OpenAIEmbeddings
15
  from langchain.embeddings.huggingface import HuggingFaceEmbeddings
16
  from langchain.vectorstores import FAISS
17
- from langchain.chains import ConversationalRetrievalChain,RetrievalQA
18
  from langchain.prompts import PromptTemplate
19
  from langchain.prompts.prompt import PromptTemplate
20
  from langchain.chat_models import ChatOpenAI
 
21
 
22
  def load_model():
23
  tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
 
24
  model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True).quantize(bits=4, compile_parallel_kernel=True, parallel_num=2).float()
25
  model = model.eval()
26
  return tokenizer,model
@@ -32,11 +34,11 @@ def chat_glm(input, history=None):
32
 
33
  tokenizer,model = load_model()
34
  response, history = model.chat(tokenizer, input, history)
35
- logger.info("chatglm:", input,response)
36
  return history, history
37
 
38
  def search_web(query):
39
- logger.info("searchweb:", query)
40
  results = ddg(query)
41
  web_content = ''
42
  if results:
@@ -44,55 +46,46 @@ def search_web(query):
44
  web_content += result['body']
45
  return web_content
46
 
47
- def chat_gpt(input, use_web, history=None):
48
- if history is None:
49
- history = []
50
- history = [] # 4097 tokens limit
51
  embedding_model_name = 'GanymedeNil/text2vec-large-chinese'
52
  vec_path = 'cache'
53
  embeddings = HuggingFaceEmbeddings(model_name=embedding_model_name)
54
-
55
- if use_web:
56
- web_content = search_web(input)
57
- else:
58
- web_content = None
59
- web_content = None # 4097 tokens limit
60
- if web_content:
61
- prompt_template = f"""基于以下已知信息,简洁和专业的来回答用户的问题。
62
- 如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。
63
- 已知网络检索内容:{web_content}""" + """
64
- 已知内容:
65
- {context}
66
- 问题:
67
- {question}"""
68
- else:
69
- prompt_template = """基于以下已知信息,请简洁并专业地回答用户的问题。
70
- 如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息"。不允许在答案中添加编造成分。另外,答案请使用中文。
71
- 已知内容:
72
- {context}
73
- 问题:
74
- {question}"""
75
-
76
- prompt = PromptTemplate(template=prompt_template,input_variables=["context", "question"])
77
  vector_store = FAISS.load_local(vec_path,embeddings)
 
 
 
 
78
 
79
- qa = RetrievalQA.from_llm(
80
- llm = ChatOpenAI(temperature=0.7,model_name='gpt-3.5-turbo'),
81
- retriever = vector_store.as_retriever(search_kwargs={"k": 3}),
82
- prompt = prompt,
83
- return_source_documents=True
84
- )
85
 
86
- result = qa({"query": input, "chat_history": history})
87
- logger.info("chatgpt:", input,result)
88
- return result["result"]
 
 
 
 
 
 
 
 
 
 
 
 
 
89
 
90
  def predict(input,
91
  large_language_model,
92
  use_web,
 
93
  openai_key,
94
  history=None):
95
- logger.info("predict..",large_language_model,use_web)
96
  if openai_key is not None:
97
  os.environ['OPENAI_API_KEY'] = openai_key
98
  else:
@@ -101,11 +94,14 @@ def predict(input,
101
  history = []
102
 
103
  if large_language_model == "GPT-3.5-turbo":
104
- resp = chat_gpt(input, use_web, history)
105
  elif large_language_model == "ChatGLM-6B-int4":
106
- resp = chat_glm(input, history)
 
107
  elif large_language_model == "Search Web":
108
  resp = search_web(input)
 
 
109
 
110
  history.append((input, resp))
111
  return '', history, history
@@ -125,12 +121,15 @@ with block as demo:
125
  model_choose = gr.Accordion("模型选择")
126
  with model_choose:
127
  large_language_model = gr.Dropdown(
128
- ["ChatGLM-6B-int4","GPT-3.5-turbo","Search Web"],
129
  label="large language model",
130
  value="ChatGLM-6B-int4")
131
  use_web = gr.Radio(["True", "False"],
132
  label="Web Search",
133
  value="False")
 
 
 
134
  openai_key = gr.Textbox(label="请输入OpenAI API key", type="password")
135
  with gr.Column(scale=4):
136
  chatbot = gr.Chatbot(label='ChatLLM').style(height=600)
@@ -143,7 +142,7 @@ with block as demo:
143
 
144
  send.click(predict,
145
  inputs=[
146
- message, large_language_model, use_web, openai_key, state
147
  ],
148
  outputs=[message, chatbot, state])
149
  clear_history.click(fn=clear_session,
@@ -153,7 +152,7 @@ with block as demo:
153
 
154
  message.submit(predict,
155
  inputs=[
156
- message, large_language_model, use_web, openai_key, state
157
  ],
158
  outputs=[message, chatbot, state])
159
  gr.Markdown("""提醒:<br>
 
14
  from langchain.embeddings import OpenAIEmbeddings
15
  from langchain.embeddings.huggingface import HuggingFaceEmbeddings
16
  from langchain.vectorstores import FAISS
17
+ from langchain.chains import ConversationalRetrievalChain,RetrievalQA,LLMChain
18
  from langchain.prompts import PromptTemplate
19
  from langchain.prompts.prompt import PromptTemplate
20
  from langchain.chat_models import ChatOpenAI
21
+ from langchain import OpenAI,VectorDBQA
22
 
23
  def load_model():
24
  tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
25
+ # gpu:.half().cuda()
26
  model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True).quantize(bits=4, compile_parallel_kernel=True, parallel_num=2).float()
27
  model = model.eval()
28
  return tokenizer,model
 
34
 
35
  tokenizer,model = load_model()
36
  response, history = model.chat(tokenizer, input, history)
37
+ logger.debug("chatglm:", input,response)
38
  return history, history
39
 
40
  def search_web(query):
41
+ logger.debug("searchweb:", query)
42
  results = ddg(query)
43
  web_content = ''
44
  if results:
 
46
  web_content += result['body']
47
  return web_content
48
 
49
+ def search_vec(query):
50
+ logger.debug("searchvec:", query)
 
 
51
  embedding_model_name = 'GanymedeNil/text2vec-large-chinese'
52
  vec_path = 'cache'
53
  embeddings = HuggingFaceEmbeddings(model_name=embedding_model_name)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
  vector_store = FAISS.load_local(vec_path,embeddings)
55
+
56
+ qa = VectorDBQA.from_chain_type(llm=OpenAI(), chain_type="stuff", vectorstore=vector_store,return_source_documents=True)
57
+ result = qa({"query": query})
58
+ return result
59
 
60
+ def chat_gpt(input, use_web, use_vec, history=None):
61
+ if history is None:
62
+ history = []
63
+ # history = [] # 4097 tokens limit
 
 
64
 
65
+ context = ""
66
+ if use_vec:
67
+ context = search_vec(input)['result']
68
+ prompt_template = f"""基于以下已知信息,请简洁并专业地回答用户的问题。
69
+ 如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息"。若答案中存在编造成分,请在该部分开头添加“据我推测”。另外,答案请使用中文。
70
+ 已知内容:
71
+ {context}"""+"""
72
+ 问题:
73
+ {question}"""
74
+
75
+ prompt = PromptTemplate(template=prompt_template,input_variables=["question"])
76
+
77
+ llm = OpenAI(temperature = 0.2)
78
+ chain = LLMChain(llm=llm, prompt=prompt)
79
+ result = chain.run(text)
80
+ return result
81
 
82
  def predict(input,
83
  large_language_model,
84
  use_web,
85
+ use_vec,
86
  openai_key,
87
  history=None):
88
+ logger.debug("predict..",large_language_model,use_web)
89
  if openai_key is not None:
90
  os.environ['OPENAI_API_KEY'] = openai_key
91
  else:
 
94
  history = []
95
 
96
  if large_language_model == "GPT-3.5-turbo":
97
+ resp = chat_gpt(input, use_web, use_vec, history)
98
  elif large_language_model == "ChatGLM-6B-int4":
99
+ _,resp = chat_glm(input, history)
100
+ resp = resp[-1][1]
101
  elif large_language_model == "Search Web":
102
  resp = search_web(input)
103
+ elif large_language_model == "Search VectorStore":
104
+ resp = search_vec(input)
105
 
106
  history.append((input, resp))
107
  return '', history, history
 
121
  model_choose = gr.Accordion("模型选择")
122
  with model_choose:
123
  large_language_model = gr.Dropdown(
124
+ ["ChatGLM-6B-int4","GPT-3.5-turbo","Search Web","Search VectorStore"],
125
  label="large language model",
126
  value="ChatGLM-6B-int4")
127
  use_web = gr.Radio(["True", "False"],
128
  label="Web Search",
129
  value="False")
130
+ use_vec = gr.Radio(["True", "False"],
131
+ label="VectorStore Search",
132
+ value="False")
133
  openai_key = gr.Textbox(label="请输入OpenAI API key", type="password")
134
  with gr.Column(scale=4):
135
  chatbot = gr.Chatbot(label='ChatLLM').style(height=600)
 
142
 
143
  send.click(predict,
144
  inputs=[
145
+ message, large_language_model, use_web, use_vec, openai_key, state
146
  ],
147
  outputs=[message, chatbot, state])
148
  clear_history.click(fn=clear_session,
 
152
 
153
  message.submit(predict,
154
  inputs=[
155
+ message, large_language_model, use_web, use_vec, openai_key, state
156
  ],
157
  outputs=[message, chatbot, state])
158
  gr.Markdown("""提醒:<br>