update css integration
Browse files
app.py
CHANGED
@@ -9,16 +9,16 @@ tokenizer = AutoTokenizer.from_pretrained("dsfsi/PuoBERTa-News")
|
|
9 |
model = AutoModelForSequenceClassification.from_pretrained("dsfsi/PuoBERTa-News")
|
10 |
|
11 |
categories = {
|
12 |
-
"arts_culture_entertainment_and_media": "Botsweretshi, setso, boitapoloso le bobegakgang",
|
13 |
-
"crime_law_and_justice": "Bosenyi, molao le bosiamisi",
|
14 |
-
"disaster_accident_and_emergency_incident": "Masetlapelo, kotsi le tiragalo ya maemo a tshoganyetso",
|
15 |
-
"economy_business_and_finance": "Ikonomi, tsa kgwebo le tsa ditšhelete",
|
16 |
-
"education": "Thuto",
|
17 |
-
"environment": "Tikologo",
|
18 |
-
"health": "Boitekanelo",
|
19 |
-
"politics": "Dipolotiki",
|
20 |
-
"religion_and_belief": "Bodumedi le tumelo",
|
21 |
-
"society": "Setšhaba"
|
22 |
}
|
23 |
|
24 |
def prediction(news):
|
@@ -30,10 +30,10 @@ def prediction(news):
|
|
30 |
def file_prediction(file):
|
31 |
# Load the file (CSV or text)
|
32 |
if file.name.endswith('.csv'):
|
33 |
-
df = pd.read_csv(file.name)
|
34 |
-
news_list = df.iloc[:, 0].tolist()
|
35 |
else:
|
36 |
-
news_list = [file.read().decode('utf-8')]
|
37 |
|
38 |
results = []
|
39 |
for news in news_list:
|
@@ -41,24 +41,6 @@ def file_prediction(file):
|
|
41 |
|
42 |
return results
|
43 |
|
44 |
-
gradio_ui = gr.Interface(
|
45 |
-
fn=prediction,
|
46 |
-
title="Setswana News Classification",
|
47 |
-
description=f"Enter Setswana news article to see the category of the news.\n For this classification, the {MODEL_URL} model was used.",
|
48 |
-
inputs=gr.Textbox(lines=10, label="Paste some Setswana news here"),
|
49 |
-
outputs=gr.Label(num_top_classes=5, label="News categories probabilities"),
|
50 |
-
)
|
51 |
-
|
52 |
-
gradio_file_ui = gr.Interface(
|
53 |
-
fn=file_prediction,
|
54 |
-
title="Upload File for Setswana News Classification",
|
55 |
-
description=f"Upload a text or CSV file with Setswana news articles. The first column in the CSV should contain the news text.",
|
56 |
-
inputs=gr.File(label="Upload text or CSV file"),
|
57 |
-
outputs=gr.Dataframe(headers=["News Text", "Category Predictions"], label="Predictions from file"),
|
58 |
-
)
|
59 |
-
|
60 |
-
gradio_combined_ui = gr.TabbedInterface([gradio_ui, gradio_file_ui], ["Text Input", "File Upload"])
|
61 |
-
|
62 |
css = """
|
63 |
body {
|
64 |
background-color: white !important;
|
@@ -88,4 +70,25 @@ body {
|
|
88 |
}
|
89 |
"""
|
90 |
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
model = AutoModelForSequenceClassification.from_pretrained("dsfsi/PuoBERTa-News")
|
10 |
|
11 |
categories = {
|
12 |
+
"arts_culture_entertainment_and_media": "Botsweretshi, setso, boitapoloso le bobegakgang/Arts, culture, entertainment and media",
|
13 |
+
"crime_law_and_justice": "Bosenyi, molao le bosiamisi/Crime, law and justice",
|
14 |
+
"disaster_accident_and_emergency_incident": "Masetlapelo, kotsi le tiragalo ya maemo a tshoganyetso/Disaster, accident and emergency incident",
|
15 |
+
"economy_business_and_finance": "Ikonomi, tsa kgwebo le tsa ditšhelete/Economy, business and finance",
|
16 |
+
"education": "Thuto/Education",
|
17 |
+
"environment": "Tikologo/Environment",
|
18 |
+
"health": "Boitekanelo/Health",
|
19 |
+
"politics": "Dipolotiki/Politics",
|
20 |
+
"religion_and_belief": "Bodumedi le tumelo/Religion and belief",
|
21 |
+
"society": "Setšhaba/Society"
|
22 |
}
|
23 |
|
24 |
def prediction(news):
|
|
|
30 |
def file_prediction(file):
|
31 |
# Load the file (CSV or text)
|
32 |
if file.name.endswith('.csv'):
|
33 |
+
df = pd.read_csv(file.name)
|
34 |
+
news_list = df.iloc[:, 0].tolist()
|
35 |
else:
|
36 |
+
news_list = [file.read().decode('utf-8')]
|
37 |
|
38 |
results = []
|
39 |
for news in news_list:
|
|
|
41 |
|
42 |
return results
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
css = """
|
45 |
body {
|
46 |
background-color: white !important;
|
|
|
70 |
}
|
71 |
"""
|
72 |
|
73 |
+
gradio_ui = gr.Interface(
|
74 |
+
fn=prediction,
|
75 |
+
title="Setswana News Classification",
|
76 |
+
description=f"Enter Setswana news article to see the category of the news.\n For this classification, the {MODEL_URL} model was used.",
|
77 |
+
inputs=gr.Textbox(lines=10, label="Paste some Setswana news here"),
|
78 |
+
outputs=gr.Label(num_top_classes=5, label="News categories probabilities"),
|
79 |
+
css=css
|
80 |
+
)
|
81 |
+
|
82 |
+
gradio_file_ui = gr.Interface(
|
83 |
+
fn=file_prediction,
|
84 |
+
title="Upload File for Setswana News Classification",
|
85 |
+
description=f"Upload a text or CSV file with Setswana news articles. The first column in the CSV should contain the news text.",
|
86 |
+
inputs=gr.File(label="Upload text or CSV file"),
|
87 |
+
outputs=gr.Dataframe(headers=["News Text", "Category Predictions"], label="Predictions from file"),
|
88 |
+
css=css
|
89 |
+
)
|
90 |
+
|
91 |
+
gradio_combined_ui = gr.TabbedInterface([gradio_ui, gradio_file_ui], ["Text Input", "File Upload"])
|
92 |
+
|
93 |
+
gradio_combined_ui.launch()
|
94 |
+
|