Spaces:
Runtime error
Runtime error
final
Browse files- Dataset/embeddingsrecipes.txt +3 -0
- Dataset/{faiss.index → faissbooks.index} +0 -0
- Dataset/faissrecipes.index +3 -0
- Dataset/recipesdataset.csv +3 -0
- app.py +1 -1
- pages/recipes.py +75 -0
Dataset/embeddingsrecipes.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a5202b41888fd390fe421bdfcac1b57867260d58426834cbd71900f2d385cba
|
3 |
+
size 98568532
|
Dataset/{faiss.index → faissbooks.index}
RENAMED
File without changes
|
Dataset/faissrecipes.index
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16751ffdb3319faf7cb5b01b726af9612598354d1e6783263e49f66429df0454
|
3 |
+
size 32326989
|
Dataset/recipesdataset.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b13aa75d0ad9b9e9d168fce0f36d67cd5734ffd090ca09a6f5c8643f71caa95
|
3 |
+
size 14171628
|
app.py
CHANGED
@@ -24,7 +24,7 @@ def load_data():
|
|
24 |
df = pd.read_csv('Dataset/parcedbooks.csv')
|
25 |
with open('Dataset/embeddingsbooks.txt', 'r') as file:
|
26 |
embeddings_list = [list(map(float, line.split())) for line in file.readlines()]
|
27 |
-
index = faiss.read_index('Dataset/
|
28 |
return df, embeddings_list, index
|
29 |
|
30 |
df, embeddings_list, index = load_data()
|
|
|
24 |
df = pd.read_csv('Dataset/parcedbooks.csv')
|
25 |
with open('Dataset/embeddingsbooks.txt', 'r') as file:
|
26 |
embeddings_list = [list(map(float, line.split())) for line in file.readlines()]
|
27 |
+
index = faiss.read_index('Dataset/faissbooks.index')
|
28 |
return df, embeddings_list, index
|
29 |
|
30 |
df, embeddings_list, index = load_data()
|
pages/recipes.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from io import BytesIO
|
6 |
+
import requests
|
7 |
+
import faiss
|
8 |
+
|
9 |
+
|
10 |
+
from transformers import AutoTokenizer, AutoModel
|
11 |
+
import numpy as np
|
12 |
+
st.set_page_config(layout="wide")
|
13 |
+
|
14 |
+
@st.cache_resource()
|
15 |
+
def load_model():
|
16 |
+
model = AutoModel.from_pretrained("cointegrated/rubert-tiny2")
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained("cointegrated/rubert-tiny2")
|
18 |
+
return model , tokenizer
|
19 |
+
|
20 |
+
model, tokenizer = load_model()
|
21 |
+
|
22 |
+
@st.cache_data()
|
23 |
+
def load_data():
|
24 |
+
df = pd.read_csv('Dataset/recipesdataset.csv')
|
25 |
+
with open('Dataset/embeddingsrecipes.txt', 'r') as file:
|
26 |
+
embeddings_list = [list(map(float, line.split())) for line in file.readlines()]
|
27 |
+
index = faiss.read_index('Dataset/faissrecipes.index')
|
28 |
+
return df, embeddings_list, index
|
29 |
+
|
30 |
+
df, embeddings_list, index = load_data()
|
31 |
+
|
32 |
+
def embed_bert_cls(text, model, tokenizer):
|
33 |
+
t = tokenizer(text, padding=True, truncation=True, return_tensors='pt')
|
34 |
+
with torch.no_grad():
|
35 |
+
model_output = model(**{k: v.to(model.device) for k, v in t.items()})
|
36 |
+
embeddings = model_output.last_hidden_state[:, 0, :]
|
37 |
+
embeddings = torch.nn.functional.normalize(embeddings)
|
38 |
+
return embeddings[0].cpu().numpy()
|
39 |
+
|
40 |
+
|
41 |
+
text = st.text_input('Введите ваше предпочтение для рекомендации')
|
42 |
+
|
43 |
+
button = st.button('Отправить запрос')
|
44 |
+
num = st.number_input('Укажите количество блюд для рекомендации', step=1, value=1)
|
45 |
+
|
46 |
+
|
47 |
+
if text and button:
|
48 |
+
decode_text = embed_bert_cls(text, model, tokenizer) # Получение вектора для введенного текста
|
49 |
+
k = num
|
50 |
+
D, I = index.search(decode_text.reshape(1, -1), k)
|
51 |
+
|
52 |
+
top_similar_indices = I[0]
|
53 |
+
top_similar_annotations = [df['annotation'].iloc[i] for i in top_similar_indices]
|
54 |
+
top_similar_images = [df['image_url'].iloc[i] for i in top_similar_indices]
|
55 |
+
images = [Image.open(BytesIO(requests.get(url).content)) for url in top_similar_images]
|
56 |
+
top_similar_title = [df['title'].iloc[i] for i in top_similar_indices]
|
57 |
+
top_similar_url = [df['page_url'].iloc[i] for i in top_similar_indices]
|
58 |
+
top_cosine_similarities = [1 - d / 2 for d in D[0]] # Преобразование расстояний в косинусное сходство
|
59 |
+
|
60 |
+
# Отображение изображений и названий
|
61 |
+
for similarity, image, annotation, title, url in zip(top_cosine_similarities, images, top_similar_annotations, top_similar_title, top_similar_url):
|
62 |
+
col1, col2 = st.columns([3, 4])
|
63 |
+
with col1:
|
64 |
+
st.image(image, width=300)
|
65 |
+
with col2:
|
66 |
+
st.write(f"***Название:*** {title}")
|
67 |
+
st.write(f"***Аннотация:*** {annotation}")
|
68 |
+
similarity = float(similarity)
|
69 |
+
st.write(f"***Cosine Similarity : {round(similarity, 3)}***")
|
70 |
+
st.write(f"***Ссылка на блюдо : {url}***")
|
71 |
+
|
72 |
+
st.markdown(
|
73 |
+
"<hr style='border: 2px solid #000; margin-top: 10px; margin-bottom: 10px;'>",
|
74 |
+
unsafe_allow_html=True
|
75 |
+
)
|