Spaces:
Running
on
Zero
Running
on
Zero
tori29umai
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -23,90 +23,78 @@ dl_cn_config(cn_dir)
|
|
23 |
dl_tagger_model(tagger_dir)
|
24 |
dl_lora_model(lora_dir)
|
25 |
|
26 |
-
@spaces.GPU(duration=120)
|
27 |
-
def predict(lora_model, input_image_path, prompt, negative_prompt, controlnet_scale, load_model_fn):
|
28 |
-
# LoRAモデルに基づきpipeを取得
|
29 |
-
pipe = load_model_fn(lora_model)
|
30 |
-
input_image = Image.open(input_image_path)
|
31 |
-
base_image = base_generation(input_image.size, (255, 255, 255, 255)).convert("RGB")
|
32 |
-
resize_image = resize_image_aspect_ratio(input_image)
|
33 |
-
resize_base_image = resize_image_aspect_ratio(base_image)
|
34 |
-
generator = torch.manual_seed(0)
|
35 |
-
last_time = time.time()
|
36 |
-
|
37 |
-
# プロンプト生成
|
38 |
-
prompt = "masterpiece, best quality, monochrome, greyscale, lineart, white background, star-shaped pupils, " + prompt
|
39 |
-
execute_tags = ["realistic", "nose", "asian"]
|
40 |
-
prompt = execute_prompt(execute_tags, prompt)
|
41 |
-
prompt = remove_duplicates(prompt)
|
42 |
-
prompt = remove_color(prompt)
|
43 |
-
print(prompt)
|
44 |
-
|
45 |
-
# 画像生成
|
46 |
-
output_image = pipe(
|
47 |
-
image=resize_base_image,
|
48 |
-
control_image=resize_image,
|
49 |
-
strength=1.0,
|
50 |
-
prompt=prompt,
|
51 |
-
negative_prompt=negative_prompt,
|
52 |
-
controlnet_conditioning_scale=float(controlnet_scale),
|
53 |
-
generator=generator,
|
54 |
-
num_inference_steps=30,
|
55 |
-
eta=1.0,
|
56 |
-
).images[0]
|
57 |
-
print(f"Time taken: {time.time() - last_time}")
|
58 |
-
output_image = output_image.resize(input_image.size, Image.LANCZOS)
|
59 |
-
return output_image
|
60 |
-
|
61 |
-
|
62 |
class Img2Img:
|
63 |
def __init__(self):
|
64 |
self.demo = self.layout()
|
65 |
self.tagger_model = None
|
66 |
self.input_image_path = None
|
67 |
self.bg_removed_image = None
|
68 |
-
self.pipe = None
|
69 |
-
self.current_lora_model = None
|
70 |
|
71 |
-
def process_prompt_analysis(self, input_image_path):
|
72 |
-
if self.tagger_model is None:
|
73 |
-
self.tagger_model = modelLoad(tagger_dir)
|
74 |
-
tags = analysis(input_image_path, tagger_dir, self.tagger_model)
|
75 |
-
prompt = remove_color(tags)
|
76 |
-
execute_tags = ["realistic", "nose", "asian"]
|
77 |
-
prompt = execute_prompt(execute_tags, prompt)
|
78 |
-
prompt = remove_duplicates(prompt)
|
79 |
-
return prompt
|
80 |
-
|
81 |
-
|
82 |
def load_model(self, lora_model):
|
83 |
-
# 既に正しいpipeがロードされている場合は再利用
|
84 |
-
if self.pipe and self.current_lora_model == lora_model:
|
85 |
-
return self.pipe # キャッシュされたpipeを返す
|
86 |
-
|
87 |
-
# 新しいpipeの生成
|
88 |
dtype = torch.float16
|
89 |
-
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=
|
90 |
controlnet = ControlNetModel.from_pretrained(cn_dir, torch_dtype=dtype, use_safetensors=True)
|
91 |
|
92 |
-
|
93 |
-
"cagliostrolab/animagine-xl-3.1", controlnet=controlnet, vae=vae, torch_dtype=
|
94 |
)
|
95 |
-
|
96 |
|
97 |
# LoRAモデルの設定
|
98 |
if lora_model == "とりにく風":
|
99 |
-
|
100 |
elif lora_model == "少女漫画風":
|
101 |
-
|
102 |
elif lora_model == "劇画調風":
|
103 |
-
|
104 |
elif lora_model == "プレーン":
|
105 |
-
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
-
|
108 |
-
self.
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
def layout(self):
|
112 |
css = """
|
@@ -119,7 +107,8 @@ class Img2Img:
|
|
119 |
with gr.Blocks(css=css) as demo:
|
120 |
with gr.Row():
|
121 |
with gr.Column():
|
122 |
-
|
|
|
123 |
self.input_image_path = gr.Image(label="Input image", type='filepath')
|
124 |
self.bg_removed_image_path = gr.Image(label="Background Removed Image", type='filepath')
|
125 |
|
@@ -146,8 +135,7 @@ class Img2Img:
|
|
146 |
)
|
147 |
|
148 |
generate_button.click(
|
149 |
-
fn=
|
150 |
-
predict(lora_model, input_image_path, prompt, negative_prompt, controlnet_scale, self.load_model),
|
151 |
inputs=[self.lora_model, self.bg_removed_image_path, self.prompt, self.negative_prompt, self.controlnet_scale],
|
152 |
outputs=self.output_image
|
153 |
)
|
|
|
23 |
dl_tagger_model(tagger_dir)
|
24 |
dl_lora_model(lora_dir)
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
class Img2Img:
|
27 |
def __init__(self):
|
28 |
self.demo = self.layout()
|
29 |
self.tagger_model = None
|
30 |
self.input_image_path = None
|
31 |
self.bg_removed_image = None
|
|
|
|
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
def load_model(self, lora_model):
|
|
|
|
|
|
|
|
|
|
|
34 |
dtype = torch.float16
|
35 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
36 |
controlnet = ControlNetModel.from_pretrained(cn_dir, torch_dtype=dtype, use_safetensors=True)
|
37 |
|
38 |
+
pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
39 |
+
"cagliostrolab/animagine-xl-3.1", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
|
40 |
)
|
41 |
+
pipe.enable_model_cpu_offload()
|
42 |
|
43 |
# LoRAモデルの設定
|
44 |
if lora_model == "とりにく風":
|
45 |
+
pipe.load_lora_weights(lora_dir, weight_name="tori29umai_line.safetensors")
|
46 |
elif lora_model == "少女漫画風":
|
47 |
+
pipe.load_lora_weights(lora_dir, weight_name="syoujomannga_line.safetensors")
|
48 |
elif lora_model == "劇画調風":
|
49 |
+
pipe.load_lora_weights(lora_dir, weight_name="gekiga_line.safetensors")
|
50 |
elif lora_model == "プレーン":
|
51 |
+
pass # プレーンの場合はLoRAを読み込まない
|
52 |
+
|
53 |
+
return pipe
|
54 |
+
|
55 |
+
@spaces.GPU(duration=120)
|
56 |
+
def predict(self, lora_model, input_image_path, prompt, negative_prompt, controlnet_scale):
|
57 |
+
pipe = self.load_model(lora_model)
|
58 |
+
input_image = Image.open(input_image_path)
|
59 |
+
base_image = base_generation(input_image.size, (255, 255, 255, 255)).convert("RGB")
|
60 |
+
resize_image = resize_image_aspect_ratio(input_image)
|
61 |
+
resize_base_image = resize_image_aspect_ratio(base_image)
|
62 |
+
generator = torch.manual_seed(0)
|
63 |
+
last_time = time.time()
|
64 |
+
|
65 |
+
# プロンプト生成
|
66 |
+
prompt = "masterpiece, best quality, monochrome, greyscale, lineart, white background, star-shaped pupils, " + prompt
|
67 |
+
execute_tags = ["realistic", "nose", "asian"]
|
68 |
+
prompt = execute_prompt(execute_tags, prompt)
|
69 |
+
prompt = remove_duplicates(prompt)
|
70 |
+
prompt = remove_color(prompt)
|
71 |
+
print(prompt)
|
72 |
+
|
73 |
+
# 画像生成
|
74 |
+
output_image = pipe(
|
75 |
+
image=resize_base_image,
|
76 |
+
control_image=resize_image,
|
77 |
+
strength=1.0,
|
78 |
+
prompt=prompt,
|
79 |
+
negative_prompt=negative_prompt,
|
80 |
+
controlnet_conditioning_scale=float(controlnet_scale),
|
81 |
+
generator=generator,
|
82 |
+
num_inference_steps=30,
|
83 |
+
eta=1.0,
|
84 |
+
).images[0]
|
85 |
+
print(f"Time taken: {time.time() - last_time}")
|
86 |
+
output_image = output_image.resize(input_image.size, Image.LANCZOS)
|
87 |
+
return output_image
|
88 |
|
89 |
+
def process_prompt_analysis(self, input_image_path):
|
90 |
+
if self.tagger_model is None:
|
91 |
+
self.tagger_model = modelLoad(tagger_dir)
|
92 |
+
tags = analysis(input_image_path, tagger_dir, self.tagger_model)
|
93 |
+
prompt = remove_color(tags)
|
94 |
+
execute_tags = ["realistic", "nose", "asian"]
|
95 |
+
prompt = execute_prompt(execute_tags, prompt)
|
96 |
+
prompt = remove_duplicates(prompt)
|
97 |
+
return prompt
|
98 |
|
99 |
def layout(self):
|
100 |
css = """
|
|
|
107 |
with gr.Blocks(css=css) as demo:
|
108 |
with gr.Row():
|
109 |
with gr.Column():
|
110 |
+
# LoRAモデル選択ドロップダウン
|
111 |
+
self.lora_model = gr.Dropdown(label="Image Style", choices=["プレーン", "とりにく風", "少女漫画風", "劇画調風"], value="プレーン")
|
112 |
self.input_image_path = gr.Image(label="Input image", type='filepath')
|
113 |
self.bg_removed_image_path = gr.Image(label="Background Removed Image", type='filepath')
|
114 |
|
|
|
135 |
)
|
136 |
|
137 |
generate_button.click(
|
138 |
+
fn=self.predict,
|
|
|
139 |
inputs=[self.lora_model, self.bg_removed_image_path, self.prompt, self.negative_prompt, self.controlnet_scale],
|
140 |
outputs=self.output_image
|
141 |
)
|