Spaces:
Running
on
Zero
Running
on
Zero
tori29umai
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -23,34 +23,27 @@ dl_cn_config(cn_dir)
|
|
23 |
dl_tagger_model(tagger_dir)
|
24 |
dl_lora_model(lora_dir)
|
25 |
|
26 |
-
def load_model(lora_dir, cn_dir):
|
27 |
-
dtype = torch.float16
|
28 |
-
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
29 |
-
controlnet = ControlNetModel.from_pretrained(cn_dir, torch_dtype=dtype, use_safetensors=True)
|
30 |
-
|
31 |
-
pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
32 |
-
"cagliostrolab/animagine-xl-3.1", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
|
33 |
-
)
|
34 |
-
pipe.enable_model_cpu_offload()
|
35 |
-
pipe.load_lora_weights(lora_dir, weight_name="syoujomannga_line.safetensors")
|
36 |
-
return pipe
|
37 |
|
38 |
@spaces.GPU(duration=120)
|
39 |
-
def predict(input_image_path, prompt, negative_prompt, controlnet_scale):
|
40 |
-
pipe
|
|
|
41 |
input_image = Image.open(input_image_path)
|
42 |
base_image = base_generation(input_image.size, (255, 255, 255, 255)).convert("RGB")
|
43 |
resize_image = resize_image_aspect_ratio(input_image)
|
44 |
resize_base_image = resize_image_aspect_ratio(base_image)
|
45 |
generator = torch.manual_seed(0)
|
46 |
last_time = time.time()
|
|
|
|
|
47 |
prompt = "masterpiece, best quality, monochrome, greyscale, lineart, white background, star-shaped pupils, " + prompt
|
48 |
execute_tags = ["realistic", "nose", "asian"]
|
49 |
prompt = execute_prompt(execute_tags, prompt)
|
50 |
-
prompt = remove_duplicates(prompt)
|
51 |
prompt = remove_color(prompt)
|
52 |
print(prompt)
|
53 |
|
|
|
54 |
output_image = pipe(
|
55 |
image=resize_base_image,
|
56 |
control_image=resize_image,
|
@@ -66,13 +59,43 @@ def predict(input_image_path, prompt, negative_prompt, controlnet_scale):
|
|
66 |
output_image = output_image.resize(input_image.size, Image.LANCZOS)
|
67 |
return output_image
|
68 |
|
|
|
69 |
class Img2Img:
|
70 |
def __init__(self):
|
71 |
self.demo = self.layout()
|
72 |
self.tagger_model = None
|
73 |
self.input_image_path = None
|
74 |
self.bg_removed_image = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
|
|
|
|
|
|
|
|
76 |
def process_prompt_analysis(self, input_image_path):
|
77 |
if self.tagger_model is None:
|
78 |
self.tagger_model = modelLoad(tagger_dir)
|
@@ -94,6 +117,7 @@ class Img2Img:
|
|
94 |
with gr.Blocks(css=css) as demo:
|
95 |
with gr.Row():
|
96 |
with gr.Column():
|
|
|
97 |
self.input_image_path = gr.Image(label="Input image", type='filepath')
|
98 |
self.bg_removed_image_path = gr.Image(label="Background Removed Image", type='filepath')
|
99 |
|
@@ -120,8 +144,8 @@ class Img2Img:
|
|
120 |
)
|
121 |
|
122 |
generate_button.click(
|
123 |
-
fn=predict,
|
124 |
-
inputs=[self.bg_removed_image_path, self.prompt, self.negative_prompt, self.controlnet_scale],
|
125 |
outputs=self.output_image
|
126 |
)
|
127 |
return demo
|
|
|
23 |
dl_tagger_model(tagger_dir)
|
24 |
dl_lora_model(lora_dir)
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
@spaces.GPU(duration=120)
|
28 |
+
def predict(self, lora_model, input_image_path, prompt, negative_prompt, controlnet_scale):
|
29 |
+
# LoRAモデルに基づきpipeを取得
|
30 |
+
pipe = self.load_model(lora_model)
|
31 |
input_image = Image.open(input_image_path)
|
32 |
base_image = base_generation(input_image.size, (255, 255, 255, 255)).convert("RGB")
|
33 |
resize_image = resize_image_aspect_ratio(input_image)
|
34 |
resize_base_image = resize_image_aspect_ratio(base_image)
|
35 |
generator = torch.manual_seed(0)
|
36 |
last_time = time.time()
|
37 |
+
|
38 |
+
# プロンプト生成
|
39 |
prompt = "masterpiece, best quality, monochrome, greyscale, lineart, white background, star-shaped pupils, " + prompt
|
40 |
execute_tags = ["realistic", "nose", "asian"]
|
41 |
prompt = execute_prompt(execute_tags, prompt)
|
42 |
+
prompt = remove_duplicates(prompt)
|
43 |
prompt = remove_color(prompt)
|
44 |
print(prompt)
|
45 |
|
46 |
+
# 画像生成
|
47 |
output_image = pipe(
|
48 |
image=resize_base_image,
|
49 |
control_image=resize_image,
|
|
|
59 |
output_image = output_image.resize(input_image.size, Image.LANCZOS)
|
60 |
return output_image
|
61 |
|
62 |
+
|
63 |
class Img2Img:
|
64 |
def __init__(self):
|
65 |
self.demo = self.layout()
|
66 |
self.tagger_model = None
|
67 |
self.input_image_path = None
|
68 |
self.bg_removed_image = None
|
69 |
+
self.pipe = None
|
70 |
+
self.current_lora_model = None
|
71 |
+
|
72 |
+
def load_model(self, lora_model):
|
73 |
+
# 既に正しいpipeがロードされている場合は再利用
|
74 |
+
if self.pipe and self.current_lora_model == lora_model:
|
75 |
+
return self.pipe # キャッシュされたpipeを返す
|
76 |
+
|
77 |
+
# 新しいpipeの生成
|
78 |
+
dtype = torch.float16
|
79 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype)
|
80 |
+
controlnet = ControlNetModel.from_pretrained(cn_dir, torch_dtype=dtype, use_safetensors=True)
|
81 |
+
|
82 |
+
self.pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
83 |
+
"cagliostrolab/animagine-xl-3.1", controlnet=controlnet, vae=vae, torch_dtype=dtype
|
84 |
+
)
|
85 |
+
self.pipe.enable_model_cpu_offload()
|
86 |
+
|
87 |
+
# LoRAモデルの設定
|
88 |
+
if lora_model == "とりにく風":
|
89 |
+
self.pipe.load_lora_weights(lora_dir, weight_name="tori29umai_line.safetensors")
|
90 |
+
elif lora_model == "少女漫画風":
|
91 |
+
self.pipe.load_lora_weights(lora_dir, weight_name="syoujomannga_line.safetensors")
|
92 |
+
elif lora_model == "劇画調風":
|
93 |
+
self.pipe.load_lora_weights(lora_dir, weight_name="gekiga_line.safetensors")
|
94 |
|
95 |
+
# 現在のlora_modelを保存
|
96 |
+
self.current_lora_model = lora_model
|
97 |
+
return self.pipe
|
98 |
+
|
99 |
def process_prompt_analysis(self, input_image_path):
|
100 |
if self.tagger_model is None:
|
101 |
self.tagger_model = modelLoad(tagger_dir)
|
|
|
117 |
with gr.Blocks(css=css) as demo:
|
118 |
with gr.Row():
|
119 |
with gr.Column():
|
120 |
+
self.lora_model = gr.Dropdown(label="Image Style", choices=["プレーン", "とりにく風", "少女漫画風"], value="プレーン")
|
121 |
self.input_image_path = gr.Image(label="Input image", type='filepath')
|
122 |
self.bg_removed_image_path = gr.Image(label="Background Removed Image", type='filepath')
|
123 |
|
|
|
144 |
)
|
145 |
|
146 |
generate_button.click(
|
147 |
+
fn=self.predict,
|
148 |
+
inputs=[self.lora_model, self.bg_removed_image_path, self.prompt, self.negative_prompt, self.controlnet_scale],
|
149 |
outputs=self.output_image
|
150 |
)
|
151 |
return demo
|