Spaces:
Running
on
Zero
Running
on
Zero
tori29umai
commited on
Commit
·
3542be4
1
Parent(s):
9330b76
app.py
Browse files- app.py +154 -0
- config.json +57 -0
- requirements.txt +21 -0
- utils/prompt_analysis.py +41 -0
- utils/prompt_utils.py +28 -0
- utils/tagger.py +149 -0
- utils/utils.py +76 -0
app.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
from gradio_imageslider import ImageSlider
|
4 |
+
import torch
|
5 |
+
|
6 |
+
torch.jit.script = lambda f: f
|
7 |
+
from diffusers import (
|
8 |
+
ControlNetModel,
|
9 |
+
StableDiffusionXLControlNetImg2ImgPipeline,
|
10 |
+
DDIMScheduler,
|
11 |
+
)
|
12 |
+
from controlnet_aux import AnylineDetector
|
13 |
+
from compel import Compel, ReturnedEmbeddingsType
|
14 |
+
from PIL import Image
|
15 |
+
import os
|
16 |
+
import time
|
17 |
+
import numpy as np
|
18 |
+
|
19 |
+
from utils.utils import load_cn_model, load_cn_config, load_tagger_model, resize_image_aspect_ratio, base_generation
|
20 |
+
from utils.prompt_analysis import PromptAnalysis
|
21 |
+
|
22 |
+
path = os.getcwd()
|
23 |
+
cn_dir = f"{path}/controlnet"
|
24 |
+
tagger_dir = f"{path}/tagger"
|
25 |
+
|
26 |
+
load_cn_model(cn_dir)
|
27 |
+
load_cn_config(cn_dir)
|
28 |
+
load_tagger_model(tagger_dir)
|
29 |
+
|
30 |
+
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
|
31 |
+
IS_SPACE = os.environ.get("SPACE_ID", None) is not None
|
32 |
+
|
33 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
34 |
+
dtype = torch.float16
|
35 |
+
|
36 |
+
LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"
|
37 |
+
|
38 |
+
print(f"device: {device}")
|
39 |
+
print(f"dtype: {dtype}")
|
40 |
+
print(f"low memory: {LOW_MEMORY}")
|
41 |
+
|
42 |
+
|
43 |
+
model = "cagliostrolab/animagine-xl-3.1"
|
44 |
+
scheduler = DDIMScheduler.from_pretrained(model, subfolder="scheduler")
|
45 |
+
controlnet = ControlNetModel.from_pretrained(cn_dir, torch_dtype=torch.float16, use_safetensors=True)
|
46 |
+
pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
47 |
+
model,
|
48 |
+
controlnet=controlnet,
|
49 |
+
torch_dtype=dtype,
|
50 |
+
variant="fp16",
|
51 |
+
use_safetensors=True,
|
52 |
+
scheduler=scheduler,
|
53 |
+
)
|
54 |
+
|
55 |
+
compel = Compel(
|
56 |
+
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
|
57 |
+
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
|
58 |
+
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
59 |
+
requires_pooled=[False, True],
|
60 |
+
)
|
61 |
+
pipe = pipe.to(device)
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
@spaces.GPU
|
66 |
+
def predict(
|
67 |
+
input_image,
|
68 |
+
prompt,
|
69 |
+
negative_prompt,
|
70 |
+
controlnet_conditioning_scale,
|
71 |
+
):
|
72 |
+
base_size =input_image.size
|
73 |
+
resize_image= resize_image_aspect_ratio(input_image)
|
74 |
+
resize_image_size = resize_image.size
|
75 |
+
width = resize_image_size[0]
|
76 |
+
height = resize_image_size[1]
|
77 |
+
white_base_pil = base_generation(resize_image.size, (255, 255, 255, 255)).convert("RGB")
|
78 |
+
conditioning, pooled = compel([prompt, negative_prompt])
|
79 |
+
generator = torch.manual_seed(0)
|
80 |
+
last_time = time.time()
|
81 |
+
|
82 |
+
output_image = pipe(
|
83 |
+
image=white_base_pil,
|
84 |
+
control_image=resize_image,
|
85 |
+
strength=1.0,
|
86 |
+
prompt_embeds=conditioning[0:1],
|
87 |
+
pooled_prompt_embeds=pooled[0:1],
|
88 |
+
negative_prompt_embeds=conditioning[1:2],
|
89 |
+
negative_pooled_prompt_embeds=pooled[1:2],
|
90 |
+
width=width,
|
91 |
+
height=height,
|
92 |
+
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
93 |
+
controlnet_start=0.0,
|
94 |
+
controlnet_end=1.0,
|
95 |
+
generator=generator,
|
96 |
+
num_inference_steps=30,
|
97 |
+
guidance_scale=8.5,
|
98 |
+
eta=1.0,
|
99 |
+
)
|
100 |
+
print(f"Time taken: {time.time() - last_time}")
|
101 |
+
output_image = output_image.resize(base_size, Image.LANCZOS)
|
102 |
+
return output_image
|
103 |
+
|
104 |
+
|
105 |
+
css = """
|
106 |
+
#intro{
|
107 |
+
# max-width: 32rem;
|
108 |
+
# text-align: center;
|
109 |
+
# margin: 0 auto;
|
110 |
+
}
|
111 |
+
"""
|
112 |
+
|
113 |
+
with gr.Blocks(css=css) as demo:
|
114 |
+
with gr.Row() as block:
|
115 |
+
with gr.Column():
|
116 |
+
# 画像アップロード用の行
|
117 |
+
with gr.Row():
|
118 |
+
with gr.Column():
|
119 |
+
input_image = gr.Image(label="入力画像", type="pil")
|
120 |
+
|
121 |
+
# プロンプト入力用の行
|
122 |
+
with gr.Row():
|
123 |
+
prompt_analysis = PromptAnalysis(tagger_dir)
|
124 |
+
[prompt, nega] = PromptAnalysis.layout(input_image)
|
125 |
+
# 画像の詳細設定用のスライダー行
|
126 |
+
with gr.Row():
|
127 |
+
controlnet_conditioning_scale = gr.Slider(minimum=0.5, maximum=1.25, value=1.0, step=0.01, interactive=True, label="ラインアートの忠実度")
|
128 |
+
|
129 |
+
# 画像生成ボタンの行
|
130 |
+
with gr.Row():
|
131 |
+
generate_button = gr.Button("生成", interactive=False)
|
132 |
+
|
133 |
+
with gr.Column():
|
134 |
+
output_image = gr.Image(type="pil", label="Output Image")
|
135 |
+
|
136 |
+
# インプットとアウトプットの設定
|
137 |
+
inputs = [
|
138 |
+
input_image,
|
139 |
+
prompt,
|
140 |
+
nega,
|
141 |
+
controlnet_conditioning_scale,
|
142 |
+
]
|
143 |
+
outputs = [output_image]
|
144 |
+
|
145 |
+
# ボタンのクリックイベントを設定
|
146 |
+
generate_button.click(
|
147 |
+
fn=predict,
|
148 |
+
inputs=[input_image, prompt, nega, controlnet_conditioning_scale],
|
149 |
+
outputs=[output_image]
|
150 |
+
)
|
151 |
+
|
152 |
+
# デモの設定と起動
|
153 |
+
demo.queue(api_open=True)
|
154 |
+
demo.launch(show_api=True)
|
config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "ControlNetModel",
|
3 |
+
"_diffusers_version": "0.27.2",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"addition_embed_type": "text_time",
|
6 |
+
"addition_embed_type_num_heads": 64,
|
7 |
+
"addition_time_embed_dim": 256,
|
8 |
+
"attention_head_dim": [
|
9 |
+
5,
|
10 |
+
10,
|
11 |
+
20
|
12 |
+
],
|
13 |
+
"block_out_channels": [
|
14 |
+
320,
|
15 |
+
640,
|
16 |
+
1280
|
17 |
+
],
|
18 |
+
"class_embed_type": null,
|
19 |
+
"conditioning_channels": 3,
|
20 |
+
"conditioning_embedding_out_channels": [
|
21 |
+
16,
|
22 |
+
32,
|
23 |
+
96,
|
24 |
+
256
|
25 |
+
],
|
26 |
+
"controlnet_conditioning_channel_order": "rgb",
|
27 |
+
"cross_attention_dim": 2048,
|
28 |
+
"down_block_types": [
|
29 |
+
"DownBlock2D",
|
30 |
+
"CrossAttnDownBlock2D",
|
31 |
+
"CrossAttnDownBlock2D"
|
32 |
+
],
|
33 |
+
"downsample_padding": 1,
|
34 |
+
"encoder_hid_dim": null,
|
35 |
+
"encoder_hid_dim_type": null,
|
36 |
+
"flip_sin_to_cos": true,
|
37 |
+
"freq_shift": 0,
|
38 |
+
"global_pool_conditions": false,
|
39 |
+
"in_channels": 4,
|
40 |
+
"layers_per_block": 2,
|
41 |
+
"mid_block_scale_factor": 1,
|
42 |
+
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
43 |
+
"norm_eps": 1e-05,
|
44 |
+
"norm_num_groups": 32,
|
45 |
+
"num_attention_heads": null,
|
46 |
+
"num_class_embeds": null,
|
47 |
+
"only_cross_attention": false,
|
48 |
+
"projection_class_embeddings_input_dim": 2816,
|
49 |
+
"resnet_time_scale_shift": "default",
|
50 |
+
"transformer_layers_per_block": [
|
51 |
+
1,
|
52 |
+
2,
|
53 |
+
10
|
54 |
+
],
|
55 |
+
"upcast_attention": null,
|
56 |
+
"use_linear_projection": true
|
57 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.29.0
|
2 |
+
accelerate
|
3 |
+
transformers
|
4 |
+
torchvision
|
5 |
+
xformers
|
6 |
+
accelerate
|
7 |
+
invisible-watermark
|
8 |
+
huggingface-hub
|
9 |
+
hf-transfer
|
10 |
+
gradio_imageslider==0.0.20
|
11 |
+
compel
|
12 |
+
opencv-python
|
13 |
+
numpy
|
14 |
+
diffusers==0.27.0
|
15 |
+
transformers
|
16 |
+
accelerate
|
17 |
+
safetensors
|
18 |
+
hidiffusion==0.1.8
|
19 |
+
spaces
|
20 |
+
torch==2.2
|
21 |
+
controlnet-aux==0.0.9
|
utils/prompt_analysis.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
from utils.prompt_utils import remove_color
|
6 |
+
from utils.tagger import modelLoad, analysis
|
7 |
+
|
8 |
+
|
9 |
+
class PromptAnalysis:
|
10 |
+
def __init__(self, app_config, post_filter=True,
|
11 |
+
default_nagative_prompt="lowres, error, extra digit, fewer digits, cropped, worst quality, "
|
12 |
+
"low quality, normal quality, jpeg artifacts, blurry"):
|
13 |
+
self.default_nagative_prompt = default_nagative_prompt
|
14 |
+
self.post_filter = post_filter
|
15 |
+
self.model = None
|
16 |
+
self.model_dir = os.path.join(app_config.dpath, 'models/tagger')
|
17 |
+
|
18 |
+
def layout(self, lang_util, input_image):
|
19 |
+
with gr.Column():
|
20 |
+
with gr.Row():
|
21 |
+
self.prompt = gr.Textbox(label=lang_util.get_text("prompt"), lines=3)
|
22 |
+
with gr.Row():
|
23 |
+
self.negative_prompt = gr.Textbox(label=lang_util.get_text("negative_prompt"), lines=3, value=self.default_nagative_prompt)
|
24 |
+
with gr.Row():
|
25 |
+
self.prompt_analysis_button = gr.Button(lang_util.get_text("analyze_prompt"))
|
26 |
+
|
27 |
+
self.prompt_analysis_button.click(
|
28 |
+
self.process_prompt_analysis,
|
29 |
+
inputs=[input_image],
|
30 |
+
outputs=self.prompt
|
31 |
+
)
|
32 |
+
return [self.prompt, self.negative_prompt]
|
33 |
+
|
34 |
+
def process_prompt_analysis(self, input_image_path):
|
35 |
+
if self.model is None:
|
36 |
+
self.model = modelLoad(self.model_dir)
|
37 |
+
tags = analysis(input_image_path, self.model_dir, self.model)
|
38 |
+
tags_list = tags
|
39 |
+
if self.post_filter:
|
40 |
+
tags_list = remove_color(tags)
|
41 |
+
return tags_list
|
utils/prompt_utils.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def remove_duplicates(base_prompt):
|
2 |
+
# タグの重複を取り除く
|
3 |
+
prompt_list = base_prompt.split(", ")
|
4 |
+
seen = set()
|
5 |
+
unique_tags = []
|
6 |
+
for tag in prompt_list :
|
7 |
+
tag_clean = tag.lower().strip()
|
8 |
+
if tag_clean not in seen and tag_clean != "":
|
9 |
+
unique_tags.append(tag)
|
10 |
+
seen.add(tag_clean)
|
11 |
+
return ", ".join(unique_tags)
|
12 |
+
|
13 |
+
|
14 |
+
def remove_color(base_prompt):
|
15 |
+
# タグの色情報を取り除く
|
16 |
+
prompt_list = base_prompt.split(", ")
|
17 |
+
color_list = ["pink", "red", "orange", "brown", "yellow", "green", "blue", "purple", "blonde", "colored skin", "white hair"]
|
18 |
+
# カラータグを除去します。
|
19 |
+
cleaned_tags = [tag for tag in prompt_list if all(color.lower() not in tag.lower() for color in color_list)]
|
20 |
+
return ", ".join(cleaned_tags)
|
21 |
+
|
22 |
+
|
23 |
+
def execute_prompt(execute_tags, base_prompt):
|
24 |
+
prompt_list = base_prompt.split(", ")
|
25 |
+
# execute_tagsを除去
|
26 |
+
filtered_tags = [tag for tag in prompt_list if tag not in execute_tags]
|
27 |
+
# 最終的なプロンプトを生成
|
28 |
+
return ", ".join(filtered_tags)
|
utils/tagger.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# https://github.com/kohya-ss/sd-scripts/blob/main/finetune/tag_images_by_wd14_tagger.py
|
3 |
+
|
4 |
+
import csv
|
5 |
+
import os
|
6 |
+
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'
|
7 |
+
|
8 |
+
from PIL import Image
|
9 |
+
import cv2
|
10 |
+
import numpy as np
|
11 |
+
from pathlib import Path
|
12 |
+
import onnx
|
13 |
+
import onnxruntime as ort
|
14 |
+
|
15 |
+
# from wd14 tagger
|
16 |
+
IMAGE_SIZE = 448
|
17 |
+
|
18 |
+
model = None # Initialize model variable
|
19 |
+
|
20 |
+
|
21 |
+
def convert_array_to_bgr(array):
|
22 |
+
"""
|
23 |
+
Convert a NumPy array image to BGR format regardless of its original format.
|
24 |
+
|
25 |
+
Parameters:
|
26 |
+
- array: NumPy array of the image.
|
27 |
+
|
28 |
+
Returns:
|
29 |
+
- A NumPy array representing the image in BGR format.
|
30 |
+
"""
|
31 |
+
# グレースケール画像(2次元配列)
|
32 |
+
if array.ndim == 2:
|
33 |
+
# グレースケールをBGRに変換(3チャンネルに拡張)
|
34 |
+
bgr_array = np.stack((array,) * 3, axis=-1)
|
35 |
+
# RGBAまたはRGB画像(3次元配列)
|
36 |
+
elif array.ndim == 3:
|
37 |
+
# RGBA画像の場合、アルファチャンネルを削除
|
38 |
+
if array.shape[2] == 4:
|
39 |
+
array = array[:, :, :3]
|
40 |
+
# RGBをBGRに変換
|
41 |
+
bgr_array = array[:, :, ::-1]
|
42 |
+
else:
|
43 |
+
raise ValueError("Unsupported array shape.")
|
44 |
+
|
45 |
+
return bgr_array
|
46 |
+
|
47 |
+
|
48 |
+
def preprocess_image(image):
|
49 |
+
image = np.array(image)
|
50 |
+
image = convert_array_to_bgr(image)
|
51 |
+
|
52 |
+
size = max(image.shape[0:2])
|
53 |
+
pad_x = size - image.shape[1]
|
54 |
+
pad_y = size - image.shape[0]
|
55 |
+
pad_l = pad_x // 2
|
56 |
+
pad_t = pad_y // 2
|
57 |
+
image = np.pad(image, ((pad_t, pad_y - pad_t), (pad_l, pad_x - pad_l), (0, 0)), mode="constant", constant_values=255)
|
58 |
+
|
59 |
+
interp = cv2.INTER_AREA if size > IMAGE_SIZE else cv2.INTER_LANCZOS4
|
60 |
+
image = cv2.resize(image, (IMAGE_SIZE, IMAGE_SIZE), interpolation=interp)
|
61 |
+
|
62 |
+
image = image.astype(np.float32)
|
63 |
+
return image
|
64 |
+
|
65 |
+
def modelLoad(model_dir):
|
66 |
+
onnx_path = os.path.join(model_dir, "model.onnx")
|
67 |
+
# 実行プロバイダーをCPUのみに指定
|
68 |
+
providers = ['CPUExecutionProvider']
|
69 |
+
# InferenceSessionの作成時にプロバイダーのリストを指定
|
70 |
+
ort_session = ort.InferenceSession(onnx_path, providers=providers)
|
71 |
+
input_name = ort_session.get_inputs()[0].name
|
72 |
+
|
73 |
+
# 実際に使用されているプロバイダーを取得して表示
|
74 |
+
actual_provider = ort_session.get_providers()[0] # 使用されているプロバイダー
|
75 |
+
print(f"Using provider: {actual_provider}")
|
76 |
+
|
77 |
+
return [ort_session, input_name]
|
78 |
+
|
79 |
+
def analysis(image_path, model_dir, model):
|
80 |
+
ort_session = model[0]
|
81 |
+
input_name = model[1]
|
82 |
+
|
83 |
+
with open(os.path.join(model_dir, "selected_tags.csv"), "r", encoding="utf-8") as f:
|
84 |
+
reader = csv.reader(f)
|
85 |
+
l = [row for row in reader]
|
86 |
+
header = l[0] # tag_id,name,category,count
|
87 |
+
rows = l[1:]
|
88 |
+
assert header[0] == "tag_id" and header[1] == "name" and header[2] == "category", f"unexpected csv format: {header}"
|
89 |
+
|
90 |
+
general_tags = [row[1] for row in rows[1:] if row[2] == "0"]
|
91 |
+
character_tags = [row[1] for row in rows[1:] if row[2] == "4"]
|
92 |
+
|
93 |
+
tag_freq = {}
|
94 |
+
undesired_tags = ["transparent background"]
|
95 |
+
|
96 |
+
# 画像をロードして前処理する
|
97 |
+
if image_path:
|
98 |
+
# 画像を開き、RGBA形式に変換して透過情報を保持
|
99 |
+
img = Image.open(image_path)
|
100 |
+
img = img.convert("RGBA")
|
101 |
+
|
102 |
+
# 透過部分を白色で塗りつぶすキャンバスを作成
|
103 |
+
canvas_image = Image.new('RGBA', img.size, (255, 255, 255, 255))
|
104 |
+
# 画像をキャンバスにペーストし、透過部分が白色になるように設定
|
105 |
+
canvas_image.paste(img, (0, 0), img)
|
106 |
+
|
107 |
+
# RGBAからRGBに変換し、透過部分を白色にする
|
108 |
+
image_pil = canvas_image.convert("RGB")
|
109 |
+
image_preprocessed = preprocess_image(image_pil)
|
110 |
+
image_preprocessed = np.expand_dims(image_preprocessed, axis=0)
|
111 |
+
|
112 |
+
# 推論を実行
|
113 |
+
prob = ort_session.run(None, {input_name: image_preprocessed})[0][0]
|
114 |
+
# タグを生成
|
115 |
+
combined_tags = []
|
116 |
+
general_tag_text = ""
|
117 |
+
character_tag_text = ""
|
118 |
+
remove_underscore = True
|
119 |
+
caption_separator = ", "
|
120 |
+
general_threshold = 0.35
|
121 |
+
character_threshold = 0.35
|
122 |
+
|
123 |
+
for i, p in enumerate(prob[4:]):
|
124 |
+
if i < len(general_tags) and p >= general_threshold:
|
125 |
+
tag_name = general_tags[i]
|
126 |
+
if remove_underscore and len(tag_name) > 3: # ignore emoji tags like >_< and ^_^
|
127 |
+
tag_name = tag_name.replace("_", " ")
|
128 |
+
|
129 |
+
if tag_name not in undesired_tags:
|
130 |
+
tag_freq[tag_name] = tag_freq.get(tag_name, 0) + 1
|
131 |
+
general_tag_text += caption_separator + tag_name
|
132 |
+
combined_tags.append(tag_name)
|
133 |
+
elif i >= len(general_tags) and p >= character_threshold:
|
134 |
+
tag_name = character_tags[i - len(general_tags)]
|
135 |
+
if remove_underscore and len(tag_name) > 3:
|
136 |
+
tag_name = tag_name.replace("_", " ")
|
137 |
+
|
138 |
+
if tag_name not in undesired_tags:
|
139 |
+
tag_freq[tag_name] = tag_freq.get(tag_name, 0) + 1
|
140 |
+
character_tag_text += caption_separator + tag_name
|
141 |
+
combined_tags.append(tag_name)
|
142 |
+
|
143 |
+
# 先頭のカンマを取る
|
144 |
+
if len(general_tag_text) > 0:
|
145 |
+
general_tag_text = general_tag_text[len(caption_separator) :]
|
146 |
+
if len(character_tag_text) > 0:
|
147 |
+
character_tag_text = character_tag_text[len(caption_separator) :]
|
148 |
+
tag_text = caption_separator.join(combined_tags)
|
149 |
+
return tag_text
|
utils/utils.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import requests
|
4 |
+
from tqdm import tqdm
|
5 |
+
import shutil
|
6 |
+
|
7 |
+
from PIL import Image, ImageOps
|
8 |
+
import numpy as np
|
9 |
+
import cv2
|
10 |
+
|
11 |
+
def load_cn_model(model_dir):
|
12 |
+
folder = model_dir
|
13 |
+
file_name = 'diffusion_pytorch_model.safetensors'
|
14 |
+
url = "https://huggingface.co/kataragi/ControlNet-LineartXL/resolve/main/Katarag_lineartXL-fp16.safetensors"
|
15 |
+
|
16 |
+
file_path = os.path.join(folder, file_name)
|
17 |
+
if not os.path.exists(file_path):
|
18 |
+
response = requests.get(url, stream=True)
|
19 |
+
|
20 |
+
total_size = int(response.headers.get('content-length', 0))
|
21 |
+
with open(file_path, 'wb') as f, tqdm(
|
22 |
+
desc=file_name,
|
23 |
+
total=total_size,
|
24 |
+
unit='iB',
|
25 |
+
unit_scale=True,
|
26 |
+
unit_divisor=1024,
|
27 |
+
) as bar:
|
28 |
+
for data in response.iter_content(chunk_size=1024):
|
29 |
+
size = f.write(data)
|
30 |
+
bar.update(size)
|
31 |
+
|
32 |
+
def load_cn_config(model_dir):
|
33 |
+
folder = model_dir
|
34 |
+
file_name = 'config.json'
|
35 |
+
file_path = os.path.join(folder, file_name)
|
36 |
+
if not os.path.exists(file_path):
|
37 |
+
config_path = os.path.join(os.getcwd(), file_name)
|
38 |
+
shutil.copy(config_path, file_path)
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
def resize_image_aspect_ratio(image):
|
43 |
+
# 元の画像サイズを取得
|
44 |
+
original_width, original_height = image.size
|
45 |
+
|
46 |
+
# アスペクト比を計算
|
47 |
+
aspect_ratio = original_width / original_height
|
48 |
+
|
49 |
+
# 標準のアスペクト比サイズを定義
|
50 |
+
sizes = {
|
51 |
+
1: (1024, 1024), # 正方形
|
52 |
+
4/3: (1152, 896), # 横長画像
|
53 |
+
3/2: (1216, 832),
|
54 |
+
16/9: (1344, 768),
|
55 |
+
21/9: (1568, 672),
|
56 |
+
3/1: (1728, 576),
|
57 |
+
1/4: (512, 2048), # 縦長画像
|
58 |
+
1/3: (576, 1728),
|
59 |
+
9/16: (768, 1344),
|
60 |
+
2/3: (832, 1216),
|
61 |
+
3/4: (896, 1152)
|
62 |
+
}
|
63 |
+
|
64 |
+
# 最も近いアスペクト比を見つける
|
65 |
+
closest_aspect_ratio = min(sizes.keys(), key=lambda x: abs(x - aspect_ratio))
|
66 |
+
target_width, target_height = sizes[closest_aspect_ratio]
|
67 |
+
|
68 |
+
# リサイズ処理
|
69 |
+
resized_image = image.resize((target_width, target_height), Image.ANTIALIAS)
|
70 |
+
|
71 |
+
return resized_image
|
72 |
+
|
73 |
+
|
74 |
+
def base_generation(size, color):
|
75 |
+
canvas = Image.new("RGBA", size, color)
|
76 |
+
return canvas
|