import gradio as gr import torch import zipfile from pyctcdecode import build_ctcdecoder from speechbrain.pretrained import EncoderASR from transformers.file_utils import cached_path, hf_bucket_url def download_lm(cache_dir="./cache"): cache_dir = "./cache/" lm_file = hf_bucket_url("dragonSwing/wav2vec2-base-vn-270h", filename="4gram.zip") lm_file = cached_path(lm_file, cache_dir=cache_dir) with zipfile.ZipFile(lm_file, "r") as zip_ref: zip_ref.extractall(cache_dir) lm_file = cache_dir + "lm.binary" vocab_file = cache_dir + "vocab-260000.txt" return lm_file, vocab_file model = EncoderASR.from_hparams( source="dragonSwing/wav2vec2-base-vn-270h", savedir="./pretrained/wav2vec-vi-asr" ) def get_decoder_ngram_model(tokenizer, ngram_lm_path, vocab_path=None): unigrams = None if vocab_path is not None: unigrams = [] with open(vocab_path, encoding="utf-8") as f: for line in f: unigrams.append(line.strip()) vocab_dict = tokenizer.get_vocab() sort_vocab = sorted((value, key) for (key, value) in vocab_dict.items()) vocab = [x[1] for x in sort_vocab] vocab_list = vocab # convert ctc blank character representation vocab_list[tokenizer.pad_token_id] = "" # replace special characters vocab_list[tokenizer.word_delimiter_token_id] = " " # specify ctc blank char index, since conventially it is the last entry of the logit matrix decoder = build_ctcdecoder(vocab_list, ngram_lm_path, unigrams=unigrams) return decoder # ngram_lm_model = get_decoder_ngram_model(model.tokenizer, lm_file, vocab_file) def transcribe_file(path, max_seconds=20, lm_model=None): waveform = model.load_audio(path) if max_seconds > 0: waveform = waveform[: max_seconds * 16000] batch = waveform.unsqueeze(0) rel_length = torch.tensor([1.0]) if lm_model: with torch.no_grad(): logits = model(batch, rel_length) text_batch = [ lm_model.decode(logit.detach().cpu().numpy(), beam_width=500) for logit in logits ] return text_batch[0] else: text_batch, _ = model.transcribe_batch( batch, rel_length ) return text_batch[0] def speech_recognize(file_upload, file_mic): if file_upload is not None: file = file_upload elif file_mic is not None: file = file_mic else: return "" # text = model.transcribe_file(file) text = transcribe_file(file) return text inputs = [ gr.Audio(source="upload", type="filepath", optional=True), gr.Audio(source="microphone", type="filepath", optional=True), ] outputs = gr.Textbox(label="Output Text") title = "wav2vec2-base-vietnamese-270h" description = "Gradio demo for a wav2vec2 base vietnamese speech recognition. To use it, simply upload your audio, click one of the examples to load them, or record from your own microphone. Read more at the links below. Currently supports 16_000hz audio files" article = "

Pretrained model

" examples = [ ["example1.wav", "example1.wav"], ["example2.mp3", "example2.mp3"], ["example3.mp3", "example3.mp3"], ["example4.wav", "example4.wav"], ] gr.Interface( speech_recognize, inputs, outputs, title=title, description=description, article=article, examples=examples, ).launch()