dragonSwing commited on
Commit
04fea09
1 Parent(s): 839c791

Reverse requirements

Browse files
Files changed (2) hide show
  1. app.py +4 -81
  2. requirements.txt +0 -7
app.py CHANGED
@@ -1,84 +1,7 @@
1
  import gradio as gr
2
- import torch
3
- import zipfile
4
- from pyctcdecode import build_ctcdecoder
5
- from speechbrain.pretrained import EncoderASR
6
- from transformers.file_utils import cached_path, hf_bucket_url
7
 
8
- cache_dir = './cache/'
9
- lm_file = hf_bucket_url(
10
- "dragonSwing/wav2vec2-base-vn-270h", filename='4gram.zip')
11
- lm_file = cached_path(lm_file, cache_dir=cache_dir)
12
- with zipfile.ZipFile(lm_file, 'r') as zip_ref:
13
- zip_ref.extractall(cache_dir)
14
- lm_file = cache_dir + 'lm.binary'
15
- vocab_file = cache_dir + 'vocab-260000.txt'
16
- model = EncoderASR.from_hparams(source="dragonSwing/wav2vec2-base-vn-270h",
17
- savedir="/content/pretrained2/"
18
- )
19
 
20
-
21
- def get_decoder_ngram_model(tokenizer, ngram_lm_path, vocab_path=None):
22
- unigrams = None
23
- if vocab_path is not None:
24
- unigrams = []
25
- with open(vocab_path, encoding='utf-8') as f:
26
- for line in f:
27
- unigrams.append(line.strip())
28
-
29
- vocab_dict = tokenizer.get_vocab()
30
- sort_vocab = sorted((value, key) for (key, value) in vocab_dict.items())
31
- vocab = [x[1] for x in sort_vocab]
32
- vocab_list = vocab
33
-
34
- # convert ctc blank character representation
35
- vocab_list[tokenizer.pad_token_id] = ""
36
- # replace special characters
37
- vocab_list[tokenizer.word_delimiter_token_id] = " "
38
- # specify ctc blank char index, since conventially it is the last entry of the logit matrix
39
- decoder = build_ctcdecoder(vocab_list, ngram_lm_path, unigrams=unigrams)
40
- return decoder
41
-
42
-
43
- ngram_lm_model = get_decoder_ngram_model(model.tokenizer, lm_file, vocab_file)
44
-
45
-
46
- def transcribe_file(path, max_seconds=20):
47
- waveform = model.load_audio(path)
48
- if max_seconds > 0:
49
- waveform = waveform[:max_seconds*16000]
50
- batch = waveform.unsqueeze(0)
51
- rel_length = torch.tensor([1.0])
52
- with torch.no_grad():
53
- logits = model(batch, rel_length)
54
- text_batch = [ngram_lm_model.decode(
55
- logit.detach().cpu().numpy(), beam_width=500) for logit in logits]
56
- return text_batch[0]
57
-
58
-
59
- def speech_recognize(file_upload, file_mic):
60
- if file_upload is not None:
61
- file = file_upload
62
- elif file_mic is not None:
63
- file = file_mic
64
- else:
65
- return ""
66
- # text = model.transcribe_file(file)
67
- text = transcribe_file(file)
68
- return text
69
-
70
-
71
- inputs = [gr.inputs.Audio(source="upload", type='filepath', optional=True), gr.inputs.Audio(
72
- source="microphone", type='filepath', optional=True)]
73
- outputs = gr.outputs.Textbox(label="Output Text")
74
- title = "wav2vec2-base-vietnamese-270h"
75
- description = "Gradio demo for a wav2vec2 base vietnamese speech recognition. To use it, simply upload your audio, click one of the examples to load them, or record from your own microphone. Read more at the links below. Currently supports 16_000hz audio files"
76
- article = "<p style='text-align: center'><a href='https://huggingface.co/dragonSwing/wav2vec2-base-vn-270h' target='_blank'>Pretrained model</a></p>"
77
- examples = [
78
- ['example1.wav', 'example1.wav'],
79
- ['example2.mp3', 'example2.mp3'],
80
- ['example3.mp3', 'example3.mp3'],
81
- ['example4.wav', 'example4.wav'],
82
- ]
83
- gr.Interface(speech_recognize, inputs, outputs, title=title,
84
- description=description, article=article, examples=examples).launch()
 
1
  import gradio as gr
 
 
 
 
 
2
 
3
+ def greet(name):
4
+ return "Hello " + name + "!!"
 
 
 
 
 
 
 
 
 
5
 
6
+ iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
+ iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1,7 +0,0 @@
1
- torch==1.9.0
2
- torchaudio==0.9.1
3
- transformers==4.12.5
4
- datasets==1.16.0
5
- pyctcdecode==0.2.0
6
- https://github.com/kpu/kenlm/archive/master.zip
7
- git+git://github.com/speechbrain/speechbrain.git@develop