Spaces:
Runtime error
Runtime error
File size: 5,117 Bytes
dd9b3ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
from typing import Any, Dict, List, Optional, Tuple, Union
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import AutoConfig, AutoModel, BertPreTrainedModel
from transformers.modeling_outputs import ModelOutput
import torch
def get_range_vector(size: int, device: int) -> torch.Tensor:
"""
Returns a range vector with the desired size, starting at 0. The CUDA implementation
is meant to avoid copy data from CPU to GPU.
"""
return torch.arange(0, size, dtype=torch.long, device=device)
class Seq2LabelsOutput(ModelOutput):
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
detect_logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
max_error_probability: Optional[torch.FloatTensor] = None
class Seq2LabelsModel(BertPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.num_detect_classes = config.num_detect_classes
self.label_smoothing = config.label_smoothing
if config.load_pretrained:
self.bert = AutoModel.from_pretrained(config.pretrained_name_or_path)
bert_config = self.bert.config
else:
bert_config = AutoConfig.from_pretrained(config.pretrained_name_or_path)
self.bert = AutoModel.from_config(bert_config)
if config.special_tokens_fix:
try:
vocab_size = self.bert.embeddings.word_embeddings.num_embeddings
except AttributeError:
# reserve more space
vocab_size = self.bert.word_embedding.num_embeddings + 5
self.bert.resize_token_embeddings(vocab_size + 1)
predictor_dropout = config.predictor_dropout if config.predictor_dropout is not None else 0.0
self.dropout = nn.Dropout(predictor_dropout)
self.classifier = nn.Linear(bert_config.hidden_size, config.vocab_size)
self.detector = nn.Linear(bert_config.hidden_size, config.num_detect_classes)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
input_offsets: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
d_tags: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], Seq2LabelsOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
if input_offsets is not None:
# offsets is (batch_size, d1, ..., dn, orig_sequence_length)
range_vector = get_range_vector(input_offsets.size(0), device=sequence_output.device).unsqueeze(1)
# selected embeddings is also (batch_size * d1 * ... * dn, orig_sequence_length)
sequence_output = sequence_output[range_vector, input_offsets]
logits = self.classifier(self.dropout(sequence_output))
logits_d = self.detector(sequence_output)
loss = None
if labels is not None and d_tags is not None:
loss_labels_fct = CrossEntropyLoss(label_smoothing=self.label_smoothing)
loss_d_fct = CrossEntropyLoss()
loss_labels = loss_labels_fct(logits.view(-1, self.num_labels), labels.view(-1))
loss_d = loss_d_fct(logits_d.view(-1, self.num_detect_classes), d_tags.view(-1))
loss = loss_labels + loss_d
if not return_dict:
output = (logits, logits_d) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return Seq2LabelsOutput(
loss=loss,
logits=logits,
detect_logits=logits_d,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
max_error_probability=torch.ones(logits.size(0)),
)
|