import functools import json import os import sys import tempfile import cv2 import gradio as gr import numpy as np import supervision as sv import torch from PIL import Image from segment_anything import build_sam from segment_anything import SamAutomaticMaskGenerator from segment_anything import SamPredictor from supervision.detection.utils import mask_to_polygons from supervision.detection.utils import xywh_to_xyxy if os.environ.get("IS_MY_DEBUG") is None: os.system("pip install -e GroundingDINO") sys.path.append("tag2text") sys.path.append("GroundingDINO") from groundingdino.util.inference import Model as DinoModel from tag2text.models import tag2text from config import * from utils import download_file_hf, detect, segment, generate_tags if not os.path.exists(abs_weight_dir): os.makedirs(abs_weight_dir, exist_ok=True) sam_checkpoint = os.path.join(abs_weight_dir, sam_dict[default_sam]["checkpoint_file"]) if not os.path.exists(sam_checkpoint): os.system(f"wget {sam_dict[default_sam]['checkpoint_url']} -O {sam_checkpoint}") tag2text_checkpoint = os.path.join( abs_weight_dir, tag2text_dict[default_tag2text]["checkpoint_file"] ) if not os.path.exists(tag2text_checkpoint): os.system( f"wget {tag2text_dict[default_tag2text]['checkpoint_url']} -O {tag2text_checkpoint}" ) dino_checkpoint = os.path.join( abs_weight_dir, dino_dict[default_dino]["checkpoint_file"] ) dino_config_file = os.path.join(abs_weight_dir, dino_dict[default_dino]["config_file"]) if not os.path.exists(dino_checkpoint): dino_repo_id = dino_dict[default_dino]["repo_id"] download_file_hf( repo_id=dino_repo_id, filename=dino_dict[default_dino]["config_file"], cache_dir=weight_dir, ) download_file_hf( repo_id=dino_repo_id, filename=dino_dict[default_dino]["checkpoint_file"], cache_dir=weight_dir, ) # load model device = torch.device("cuda" if torch.cuda.is_available() else "cpu") tag2text_model = tag2text.tag2text_caption( pretrained=tag2text_checkpoint, image_size=384, vit="swin_b", delete_tag_index=delete_tag_index, ) # threshold for tagging # we reduce the threshold to obtain more tags tag2text_model.threshold = 0.64 tag2text_model.to(device) tag2text_model.eval() sam = build_sam(checkpoint=sam_checkpoint) sam.to(device=device) sam_predictor = SamPredictor(sam) sam_automask_generator = SamAutomaticMaskGenerator(sam) grounding_dino_model = DinoModel( model_config_path=dino_config_file, model_checkpoint_path=dino_checkpoint, device=device, ) def process( image_path, task, prompt, box_threshold, text_threshold, iou_threshold, kernel_size, expand_mask, ): global tag2text_model, sam_predictor, sam_automask_generator, grounding_dino_model, device output_gallery = [] detections = None metadata = {"image": {}, "annotations": []} try: # Load image image = Image.open(image_path) image_pil = image.convert("RGB") image = np.array(image_pil) orig_image = image.copy() # Extract image metadata filename = os.path.basename(image_path) h, w = image.shape[:2] metadata["image"]["file_name"] = filename metadata["image"]["width"] = w metadata["image"]["height"] = h # Generate tags if task in ["auto", "detection"] and prompt == "": tags, caption = generate_tags(tag2text_model, image_pil, "None", device) prompt = " . ".join(tags) print(f"Caption: {caption}") print(f"Tags: {tags}") # ToDo: Extract metadata metadata["image"]["caption"] = caption metadata["image"]["tags"] = tags if prompt: metadata["prompt"] = prompt print(f"Prompt: {prompt}") # Detect boxes if prompt != "": detections, phrases, classes = detect( grounding_dino_model, image, caption=prompt, box_threshold=box_threshold, text_threshold=text_threshold, iou_threshold=iou_threshold, post_process=True, ) print(phrases) # Draw boxes box_annotator = sv.BoxAnnotator() labels = [ f"{phrases[i]} {detections.confidence[i]:0.2f}" for i in range(len(phrases)) ] image = box_annotator.annotate( scene=image, detections=detections, labels=labels ) output_gallery.append(image) # Segmentation if task in ["auto", "segment"]: kernel = cv2.getStructuringElement( cv2.MORPH_ELLIPSE, (2 * kernel_size + 1, 2 * kernel_size + 1) ) if detections: masks, scores = segment( sam_predictor, image=orig_image, boxes=detections.xyxy ) if expand_mask: masks = [ cv2.dilate(mask.astype(np.uint8), kernel) for mask in masks ] else: masks = [ cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, kernel) for mask in masks ] detections.mask = masks binary_mask = functools.reduce( lambda x, y: x + y, detections.mask ).astype(bool) else: masks = sam_automask_generator.generate(orig_image) sorted_generated_masks = sorted( masks, key=lambda x: x["area"], reverse=True ) xywh = np.array([mask["bbox"] for mask in sorted_generated_masks]) scores = np.array( [mask["predicted_iou"] for mask in sorted_generated_masks] ) if expand_mask: mask = np.array( [ cv2.dilate(mask["segmentation"].astype(np.uint8), kernel) for mask in sorted_generated_masks ] ) else: mask = np.array( [mask["segmentation"] for mask in sorted_generated_masks] ) detections = sv.Detections( xyxy=xywh_to_xyxy(boxes_xywh=xywh), mask=mask ) binary_mask = None mask_annotator = sv.MaskAnnotator() mask_image = np.zeros_like(image, dtype=np.uint8) mask_image = mask_annotator.annotate( mask_image, detections=detections, opacity=1 ) annotated_image = mask_annotator.annotate(image, detections=detections) output_gallery.append(mask_image) if binary_mask is not None: binary_mask_image = binary_mask * 255 cutout_image = np.expand_dims(binary_mask, axis=-1) * orig_image output_gallery.append(binary_mask_image) output_gallery.append(cutout_image) output_gallery.append(annotated_image) # ToDo: Extract metadata if detections: i = 0 for (xyxy, mask, confidence, _, _), area, box_area in zip( detections, detections.area, detections.box_area ): annotation = { "id": i + 1, "bbox": [int(x) for x in xyxy], "box_area": float(box_area), } if confidence: annotation["confidence"] = float(confidence) annotation["label"] = phrases[i] if mask is not None: # annotation["segmentation"] = mask_to_polygons(mask) annotation["area"] = int(area) annotation["predicted_iou"] = float(scores[i]) metadata["annotations"].append(annotation) i += 1 meta_file = tempfile.NamedTemporaryFile(delete=False, suffix=".json") meta_file_path = meta_file.name with open(meta_file_path, "w", encoding="utf-8") as fp: json.dump(metadata, fp) return output_gallery, meta_file_path except Exception as error: raise gr.Error(f"global exception: {error}") title = "Annotate Anything" with gr.Blocks(css="style.css", title=title) as demo: with gr.Row(elem_classes=["container"]): with gr.Column(scale=1): input_image = gr.Image(type="filepath", label="Input") task = gr.Dropdown( ["detect", "segment", "auto"], value="auto", label="task_type" ) text_prompt = gr.Textbox( label="Detection Prompt", info="To detect multiple objects, seperating each name with '.', like this: cat . dog . chair ", ) with gr.Accordion("Advanced parameters", open=False): box_threshold = gr.Slider( minimum=0, maximum=1, value=0.3, step=0.05, label="Box threshold", ) text_threshold = gr.Slider( minimum=0, maximum=1, value=0.25, step=0.05, label="Text threshold", ) iou_threshold = gr.Slider( minimum=0, maximum=1, value=0.5, step=0.05, label="IOU threshold", info="Intersection over Union threshold", ) kernel_size = gr.Slider( minimum=1, maximum=5, value=2, step=1, label="Kernel size", info="Use to smooth segment masks", ) expand_mask = gr.Checkbox( label="Expand mask", ) run_button = gr.Button(label="Run") with gr.Column(scale=2): gallery = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery" ).style(preview=True, grid=2, object_fit="scale-down") meta_file = gr.File(label="Metadata file") with gr.Row(elem_classes=["container"]): gr.Examples( [ ["examples/dog.png", "auto", ""], ["examples/eiffel.jpg", "auto", "tower . lake . grass . sky"], ["examples/eiffel.png", "segment", ""], ["examples/girl.png", "auto", "girl . face"], ["examples/horse.png", "detect", "horse"], ["examples/traffic.jpg", "auto", ""], ], [input_image, task, text_prompt], ) gr.HTML( """


You can duplicate this Space to skip the queue:Duplicate Space

visitors

""" ) run_button.click( fn=process, inputs=[ input_image, task, text_prompt, box_threshold, text_threshold, iou_threshold, kernel_size, expand_mask, ], outputs=[gallery, meta_file], ) demo.queue(concurrency_count=2).launch()