Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,25 @@
|
|
1 |
from transformers import *
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
-
from googletrans import Translator
|
5 |
model_category = AutoModelForCausalLM.from_pretrained("dquisi/story_spanish_gpt2_by_category")
|
6 |
tokenizer_category = AutoTokenizer.from_pretrained("dquisi/story_spanish_gpt2_by_category")
|
7 |
story_gen = pipeline("text-generation", "pranavpsv/gpt2-genre-story-generator")
|
8 |
-
translator = Translator()
|
9 |
tokenizer = AutoTokenizer.from_pretrained("dquisi/story_spanish_gpt2_v2")
|
10 |
model = AutoModelForCausalLM.from_pretrained("dquisi/story_spanish_gpt2_v2")
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def generate_story_translate(texto,longitud=250,categoria='superheroe'):
|
12 |
-
|
13 |
-
|
14 |
-
query = "<BOS> <{0}> {1}".format(
|
15 |
generated_text = story_gen(query, max_length=longitud,do_sample=True,repetition_penalty=1.1, temperature=1.2, top_p=0.95, top_k=50)
|
16 |
generated_text = generated_text[0]['generated_text']
|
17 |
generated_text = generated_text.split('> ')[2]
|
18 |
-
|
19 |
-
return generate_translate.text
|
20 |
def generate_story_custom(texto,longitud=250):
|
21 |
query = "<BOS> <{0}>".format(texto)
|
22 |
input_ids = tokenizer(query, return_tensors="pt")["input_ids"]
|
@@ -28,10 +31,10 @@ def generate_story_custom_category(texto,longitud=250,categoria='superheroe'):
|
|
28 |
output = model_category.generate(input_ids, max_length=longitud,do_sample=True,repetition_penalty=1.1, temperature=1.2, top_p=0.95, top_k=50)
|
29 |
return tokenizer_category.decode(output[0])
|
30 |
|
31 |
-
contexto = gr.inputs.Textbox(lines=
|
32 |
categoria = gr.inputs.Textbox(lines=1, placeholder="Ingresar Categoria")
|
33 |
longitud = gr.inputs.Slider(50, 500)
|
34 |
-
opciones = gr.inputs.CheckboxGroup(["Generar", "Generar por Categoria", "Generar 2"])
|
35 |
resultado = gr.outputs.HTML(label="Resultado")
|
36 |
def generate_storie(contexto,opciones,categoria,longitud):
|
37 |
resultado=""
|
@@ -40,7 +43,7 @@ def generate_storie(contexto,opciones,categoria,longitud):
|
|
40 |
cuentos.append(generate_story_custom(contexto,longitud))
|
41 |
if "Generar por Categoria" in opciones:
|
42 |
cuentos.append(generate_story_custom_category(contexto,longitud,categoria))
|
43 |
-
if "Generar 2" in opciones:
|
44 |
cuentos.append(generate_story_translate(contexto,longitud,categoria))
|
45 |
resultado += "<p><b>Generados:</b> "+'<b>Cuento: <b/>'.join(cuentos)+"</p>"
|
46 |
return resultado
|
|
|
1 |
from transformers import *
|
2 |
import gradio as gr
|
3 |
import torch
|
|
|
4 |
model_category = AutoModelForCausalLM.from_pretrained("dquisi/story_spanish_gpt2_by_category")
|
5 |
tokenizer_category = AutoTokenizer.from_pretrained("dquisi/story_spanish_gpt2_by_category")
|
6 |
story_gen = pipeline("text-generation", "pranavpsv/gpt2-genre-story-generator")
|
|
|
7 |
tokenizer = AutoTokenizer.from_pretrained("dquisi/story_spanish_gpt2_v2")
|
8 |
model = AutoModelForCausalLM.from_pretrained("dquisi/story_spanish_gpt2_v2")
|
9 |
+
task_name_en_es = f"translation_en_to_es"
|
10 |
+
model_name_en_es = f"Helsinki-NLP/opus-mt-en-es"
|
11 |
+
task_name_es_en = f"translation_es_to_en"
|
12 |
+
model_name_es_en = f"Helsinki-NLP/opus-mt-es-en"
|
13 |
+
translator_es_en = pipeline(task_name_en_es, model=model_name_en_es, tokenizer=model_name_en_es)
|
14 |
+
translator_en_es = pipeline(task_name_es_en, model=model_name_es_en, tokenizer=model_name_es_en)
|
15 |
def generate_story_translate(texto,longitud=250,categoria='superheroe'):
|
16 |
+
translate_en = translator_es_en(texto)[0]["translation_text"]
|
17 |
+
translate_cat_en = translator_es_en(texto)[0]["translation_text"]
|
18 |
+
query = "<BOS> <{0}> {1}".format(translate_cat_en, translate_en)
|
19 |
generated_text = story_gen(query, max_length=longitud,do_sample=True,repetition_penalty=1.1, temperature=1.2, top_p=0.95, top_k=50)
|
20 |
generated_text = generated_text[0]['generated_text']
|
21 |
generated_text = generated_text.split('> ')[2]
|
22 |
+
return translator_en_es(generated_text)[0]["translation_text"]
|
|
|
23 |
def generate_story_custom(texto,longitud=250):
|
24 |
query = "<BOS> <{0}>".format(texto)
|
25 |
input_ids = tokenizer(query, return_tensors="pt")["input_ids"]
|
|
|
31 |
output = model_category.generate(input_ids, max_length=longitud,do_sample=True,repetition_penalty=1.1, temperature=1.2, top_p=0.95, top_k=50)
|
32 |
return tokenizer_category.decode(output[0])
|
33 |
|
34 |
+
contexto = gr.inputs.Textbox(lines=5, placeholder="Ingresar palabras claves para generar un cuento")
|
35 |
categoria = gr.inputs.Textbox(lines=1, placeholder="Ingresar Categoria")
|
36 |
longitud = gr.inputs.Slider(50, 500)
|
37 |
+
opciones = gr.inputs.CheckboxGroup(["Generar", "Generar por Categoria", "Generar V 2.0"])
|
38 |
resultado = gr.outputs.HTML(label="Resultado")
|
39 |
def generate_storie(contexto,opciones,categoria,longitud):
|
40 |
resultado=""
|
|
|
43 |
cuentos.append(generate_story_custom(contexto,longitud))
|
44 |
if "Generar por Categoria" in opciones:
|
45 |
cuentos.append(generate_story_custom_category(contexto,longitud,categoria))
|
46 |
+
if "Generar V 2.0" in opciones:
|
47 |
cuentos.append(generate_story_translate(contexto,longitud,categoria))
|
48 |
resultado += "<p><b>Generados:</b> "+'<b>Cuento: <b/>'.join(cuentos)+"</p>"
|
49 |
return resultado
|