File size: 8,616 Bytes
c37fce3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
752ba3f
c37fce3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os
import json
import numpy
import torch
import random
import gradio as gr

from transformers import AutoTokenizer, AutoModel

def get_model():
    tokenizer = AutoTokenizer.from_pretrained("THUDM/codegeex2-6b", trust_remote_code=True)
    model = AutoModel.from_pretrained("THUDM/codegeex2-6b", trust_remote_code=True).to('cpu')
    # 如需实现多显卡模型加载,请将上面一行注释并启用一下两行,"num_gpus"调整为自己需求的显卡数量 / To enable Multiple GPUs model loading, please uncomment the line above and enable the following two lines. Adjust "num_gpus" to the desired number of graphics cards.
    # from gpus import load_model_on_gpus
    # model = load_model_on_gpus("THUDM/codegeex2-6b", num_gpus=2)
    model = model.eval()
    return tokenizer, model

tokenizer, model = get_model()

examples = []
with open(os.path.join(os.path.split(os.path.realpath(__file__))[0], "example_inputs.jsonl"), "r", encoding="utf-8") as f:
    for line in f:
        examples.append(list(json.loads(line).values()))

    
LANGUAGE_TAG = {
    "Abap"         : "* language: Abap",
    "ActionScript" : "// language: ActionScript",
    "Ada"          : "-- language: Ada",
    "Agda"         : "-- language: Agda",
    "ANTLR"        : "// language: ANTLR",
    "AppleScript"  : "-- language: AppleScript",
    "Assembly"     : "; language: Assembly",
    "Augeas"       : "// language: Augeas",
    "AWK"          : "// language: AWK",
    "Basic"        : "' language: Basic",
    "C"            : "// language: C",
    "C#"           : "// language: C#",
    "C++"          : "// language: C++",
    "CMake"        : "# language: CMake",
    "Cobol"        : "// language: Cobol",
    "CSS"          : "/* language: CSS */",
    "CUDA"         : "// language: Cuda",
    "Dart"         : "// language: Dart",
    "Delphi"       : "{language: Delphi}",
    "Dockerfile"   : "# language: Dockerfile",
    "Elixir"       : "# language: Elixir",
    "Erlang"       : f"% language: Erlang",
    "Excel"        : "' language: Excel",
    "F#"           : "// language: F#",
    "Fortran"      : "!language: Fortran",
    "GDScript"     : "# language: GDScript",
    "GLSL"         : "// language: GLSL",
    "Go"           : "// language: Go",
    "Groovy"       : "// language: Groovy",
    "Haskell"      : "-- language: Haskell",
    "HTML"         : "<!--language: HTML-->",
    "Isabelle"     : "(*language: Isabelle*)",
    "Java"         : "// language: Java",
    "JavaScript"   : "// language: JavaScript",
    "Julia"        : "# language: Julia",
    "Kotlin"       : "// language: Kotlin",
    "Lean"         : "-- language: Lean",
    "Lisp"         : "; language: Lisp",
    "Lua"          : "// language: Lua",
    "Markdown"     : "<!--language: Markdown-->",
    "Matlab"       : f"% language: Matlab",
    "Objective-C"  : "// language: Objective-C",
    "Objective-C++": "// language: Objective-C++",
    "Pascal"       : "// language: Pascal",
    "Perl"         : "# language: Perl",
    "PHP"          : "// language: PHP",
    "PowerShell"   : "# language: PowerShell",
    "Prolog"       : f"% language: Prolog",
    "Python"       : "# language: Python",
    "R"            : "# language: R",
    "Racket"       : "; language: Racket",
    "RMarkdown"    : "# language: RMarkdown",
    "Ruby"         : "# language: Ruby",
    "Rust"         : "// language: Rust",
    "Scala"        : "// language: Scala",
    "Scheme"       : "; language: Scheme",
    "Shell"        : "# language: Shell",
    "Solidity"     : "// language: Solidity",
    "SPARQL"       : "# language: SPARQL",
    "SQL"          : "-- language: SQL",
    "Swift"        : "// language: swift",
    "TeX"          : f"% language: TeX",
    "Thrift"       : "/* language: Thrift */",
    "TypeScript"   : "// language: TypeScript",
    "Vue"          : "<!--language: Vue-->",
    "Verilog"      : "// language: Verilog",
    "Visual Basic" : "' language: Visual Basic",
}


def set_random_seed(seed):
    """Set random seed for reproducability."""
    random.seed(seed)
    numpy.random.seed(seed)
    torch.manual_seed(seed)


def main():
    def predict(
        prompt, 
        lang,
        seed, 
        out_seq_length, 
        temperature, 
        top_k, 
        top_p,
    ):
        set_random_seed(seed)
        if lang != "None":
            prompt = LANGUAGE_TAG[lang] + "\n" + prompt
        
        inputs = tokenizer([prompt], return_tensors="pt")
        inputs = inputs.to(model.device)    
        outputs = model.generate(**inputs, 
                                max_length=inputs['input_ids'].shape[-1] + out_seq_length, 
                                do_sample=True, 
                                top_p=top_p, 
                                top_k=top_k,
                                temperature=temperature,
                                pad_token_id=2,
                                eos_token_id=2)
        response = tokenizer.decode(outputs[0])
        
        return response
    
    with gr.Blocks(title="CodeGeeX2 DEMO") as demo:
        gr.Markdown(
            """
            <p align="center">
                <img src="https://raw.githubusercontent.com/THUDM/CodeGeeX2/main/resources/codegeex_logo.png">
            </p>
            """)
        gr.Markdown(
            """
            <p align="center">
                🏠 <a href="https://codegeex.cn" target="_blank">Homepage</a>|💻 <a href="https://github.com/THUDM/CodeGeeX2" target="_blank">GitHub</a>|🛠 Tools <a href="https://marketplace.visualstudio.com/items?itemName=aminer.codegeex" target="_blank">VS Code</a>, <a href="https://plugins.jetbrains.com/plugin/20587-codegeex" target="_blank">Jetbrains</a>|🤗 <a href="https://huggingface.co./THUDM/codegeex2-6b" target="_blank">HF Repo</a>|📄 <a href="https://arxiv.org/abs/2303.17568" target="_blank">Paper</a>
            </p>
            """)
        gr.Markdown(
            """
            This is the DEMO for CodeGeeX2. Please note that:
            * CodeGeeX2 is a base model, which is not instruction-tuned for chatting. It can do tasks like code completion/translation/explaination. To try the instruction-tuned version in CodeGeeX plugins ([VS Code](https://marketplace.visualstudio.com/items?itemName=aminer.codegeex), [Jetbrains](https://plugins.jetbrains.com/plugin/20587-codegeex)).
            * Programming languages can be controled by adding `language tag`, e.g., `# language: Python`. The format should be respected to ensure performance, full list can be found [here](https://github.com/THUDM/CodeGeeX2/blob/main/evaluation/utils.py#L14).
            * Write comments under the format of the selected programming language to achieve better results, see examples below.
            """)

        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(lines=13, placeholder='Please enter the description or select an example input below.',label='Input')
                with gr.Row():
                    gen = gr.Button("Generate")
                    clr = gr.Button("Clear")

            outputs = gr.Textbox(lines=15, label='Output')

        gr.Markdown(
            """
            Generation Parameter
            """)
        
        with gr.Row():
            with gr.Row():
                seed = gr.Slider(maximum=10000, value=8888, step=1, label='Seed')
                with gr.Row():
                    out_seq_length = gr.Slider(maximum=8192, value=128, minimum=1, step=1, label='Output Sequence Length')
                    temperature = gr.Slider(maximum=1, value=0.2, minimum=0, label='Temperature')
                with gr.Row():
                    top_k = gr.Slider(maximum=100, value=0, minimum=0, step=1, label='Top K')
                    top_p = gr.Slider(maximum=1, value=0.95, minimum=0, label='Top P')
        with gr.Row():
            lang = gr.Radio(
                choices=["None"] + list(LANGUAGE_TAG.keys()), value='None', label='Programming Language')
        inputs = [prompt, lang, seed, out_seq_length, temperature, top_k, top_p]
        gen.click(fn=predict, inputs=inputs, outputs=outputs)
        clr.click(fn=lambda value: gr.update(value=""), inputs=clr, outputs=prompt)

        gr_examples = gr.Examples(examples=examples, inputs=[prompt, lang],
                                  label="Example Inputs (Click to insert an examplet it into the input box)",
                                  examples_per_page=20)
        
    demo.launch(share=False)

if __name__ == '__main__':
    with torch.no_grad():
        main()