import sys sys.path.append("generative-models") import os, math, torch, cv2 from omegaconf import OmegaConf from glob import glob from pathlib import Path from typing import Optional import numpy as np from einops import rearrange, repeat from PIL import Image from torchvision.transforms import ToTensor from torchvision.transforms import functional as TF from sgm.util import instantiate_from_config def load_model(config: str, device: str, num_frames: int, num_steps: int): config = OmegaConf.load(config) config.model.params.conditioner_config.params.emb_models[0].params.open_clip_embedding_config.params.init_device = device config.model.params.sampler_config.params.num_steps = num_steps config.model.params.sampler_config.params.guider_config.params.num_frames = (num_frames) with torch.device(device): model = instantiate_from_config(config.model).to(device).eval().requires_grad_(False) return model num_frames = 25 num_steps = 30 model_config = "generative-models/scripts/sampling/configs/svd_xt.yaml" device = "cuda" if torch.cuda.is_available() else "cpu" model = load_model(model_config, device, num_frames, num_steps) model.conditioner.cpu() model.first_stage_model.cpu() model.model.to(dtype=torch.float16) torch.cuda.empty_cache() model = model.requires_grad_(False) def get_unique_embedder_keys_from_conditioner(conditioner): return list(set([x.input_key for x in conditioner.embedders])) def get_batch(keys, value_dict, N, T, device, dtype=None): batch = {} batch_uc = {} for key in keys: if key == "fps_id": batch[key] = ( torch.tensor([value_dict["fps_id"]]) .to(device, dtype=dtype) .repeat(int(math.prod(N))) ) elif key == "motion_bucket_id": batch[key] = ( torch.tensor([value_dict["motion_bucket_id"]]) .to(device, dtype=dtype) .repeat(int(math.prod(N))) ) elif key == "cond_aug": batch[key] = repeat( torch.tensor([value_dict["cond_aug"]]).to(device, dtype=dtype), "1 -> b", b=math.prod(N), ) elif key == "cond_frames": batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0]) elif key == "cond_frames_without_noise": batch[key] = repeat( value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0] ) else: batch[key] = value_dict[key] if T is not None: batch["num_video_frames"] = T for key in batch.keys(): if key not in batch_uc and isinstance(batch[key], torch.Tensor): batch_uc[key] = torch.clone(batch[key]) return batch, batch_uc def sample( input_path: str = "/content/test_image.png", resize_image: bool = False, num_frames: Optional[int] = None, num_steps: Optional[int] = None, fps_id: int = 6, motion_bucket_id: int = 127, cond_aug: float = 0.02, seed: int = 23, decoding_t: int = 14, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary. device: str = "cuda", output_folder: Optional[str] = "/content/outputs", ): """ Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`. """ torch.manual_seed(seed) path = Path(input_path) all_img_paths = [] if path.is_file(): if any([input_path.endswith(x) for x in ["jpg", "jpeg", "png"]]): all_img_paths = [input_path] else: raise ValueError("Path is not valid image file.") elif path.is_dir(): all_img_paths = sorted( [ f for f in path.iterdir() if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"] ] ) if len(all_img_paths) == 0: raise ValueError("Folder does not contain any images.") else: raise ValueError all_out_paths = [] for input_img_path in all_img_paths: with Image.open(input_img_path) as image: if image.mode == "RGBA": image = image.convert("RGB") if resize_image and image.size != (1024, 576): print(f"Resizing {image.size} to (1024, 576)") image = TF.resize(TF.resize(image, 1024), (576, 1024)) w, h = image.size if h % 64 != 0 or w % 64 != 0: width, height = map(lambda x: x - x % 64, (w, h)) image = image.resize((width, height)) print( f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!" ) image = ToTensor()(image) image = image * 2.0 - 1.0 image = image.unsqueeze(0).to(device) H, W = image.shape[2:] assert image.shape[1] == 3 F = 8 C = 4 shape = (num_frames, C, H // F, W // F) if (H, W) != (576, 1024): print( "WARNING: The conditioning frame you provided is not 576x1024. This leads to suboptimal performance as model was only trained on 576x1024. Consider increasing `cond_aug`." ) if motion_bucket_id > 255: print( "WARNING: High motion bucket! This may lead to suboptimal performance." ) if fps_id < 5: print("WARNING: Small fps value! This may lead to suboptimal performance.") if fps_id > 30: print("WARNING: Large fps value! This may lead to suboptimal performance.") value_dict = {} value_dict["motion_bucket_id"] = motion_bucket_id value_dict["fps_id"] = fps_id value_dict["cond_aug"] = cond_aug value_dict["cond_frames_without_noise"] = image value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image) value_dict["cond_aug"] = cond_aug # low vram mode model.conditioner.cpu() model.first_stage_model.cpu() torch.cuda.empty_cache() model.sampler.verbose = True with torch.no_grad(): with torch.autocast(device): model.conditioner.to(device) batch, batch_uc = get_batch( get_unique_embedder_keys_from_conditioner(model.conditioner), value_dict, [1, num_frames], T=num_frames, device=device, ) c, uc = model.conditioner.get_unconditional_conditioning( batch, batch_uc=batch_uc, force_uc_zero_embeddings=[ "cond_frames", "cond_frames_without_noise", ], ) model.conditioner.cpu() torch.cuda.empty_cache() # from here, dtype is fp16 for k in ["crossattn", "concat"]: uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames) uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames) c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames) c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames) for k in uc.keys(): uc[k] = uc[k].to(dtype=torch.float16) c[k] = c[k].to(dtype=torch.float16) randn = torch.randn(shape, device=device, dtype=torch.float16) additional_model_inputs = {} additional_model_inputs["image_only_indicator"] = torch.zeros(2, num_frames).to(device) additional_model_inputs["num_video_frames"] = batch["num_video_frames"] for k in additional_model_inputs: if isinstance(additional_model_inputs[k], torch.Tensor): additional_model_inputs[k] = additional_model_inputs[k].to(dtype=torch.float16) def denoiser(input, sigma, c): return model.denoiser(model.model, input, sigma, c, **additional_model_inputs) samples_z = model.sampler(denoiser, randn, cond=c, uc=uc) samples_z.to(dtype=model.first_stage_model.dtype) model.en_and_decode_n_samples_a_time = decoding_t model.first_stage_model.to(device) samples_x = model.decode_first_stage(samples_z) samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0) model.first_stage_model.cpu() torch.cuda.empty_cache() os.makedirs(output_folder, exist_ok=True) base_count = len(glob(os.path.join(output_folder, "*.mp4"))) video_path = os.path.join(output_folder, f"{base_count:06d}.mp4") writer = cv2.VideoWriter( video_path, cv2.VideoWriter_fourcc(*"MP4V"), fps_id + 1, (samples.shape[-1], samples.shape[-2]), ) vid = ( (rearrange(samples, "t c h w -> t h w c") * 255) .cpu() .numpy() .astype(np.uint8) ) for frame in vid: frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) writer.write(frame) writer.release() all_out_paths.append(video_path) return all_out_paths import gradio as gr import random def url2imge(input_path: str)->str: return input_path def infer(input_path: str, resize_image: bool, n_frames: int, n_steps: int, seed: str, decoding_t: int) -> str: if seed == "random": seed = random.randint(0, 2**32) seed = int(seed) output_paths = sample( input_path=input_path, resize_image=resize_image, num_frames=n_frames, num_steps=n_steps, fps_id=6, motion_bucket_id=127, cond_aug=0.02, seed=seed, decoding_t=decoding_t, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary. device=device, ) return output_paths[0] with gr.Blocks() as demo: with gr.Column(): text = gr.Textbox(label="input image url") btn2 = gr.Button("url to imge") image = gr.Image(label="input image", type="filepath") resize_image = gr.Checkbox(label="resize to optimal size", value=True) btn = gr.Button("Run") with gr.Accordion(label="Advanced options", open=False): n_frames = gr.Number(precision=0, label="number of frames", value=num_frames) n_steps = gr.Number(precision=0, label="number of steps", value=num_steps) seed = gr.Text(value="random", label="seed (integer or 'random')",) decoding_t = gr.Number(precision=0, label="number of frames decoded at a time", value=2) with gr.Column(): video_out = gr.Video(label="generated video") examples = [["https://img.technews.tw/wp-content/uploads/2023/08/17150937/zac-durant-_6HzPU9Hyfg-unsplash-800x533.jpg"]] inputs = [image, resize_image, n_frames, n_steps, seed, decoding_t] outputs = [video_out] btn.click(infer, inputs=inputs, outputs=outputs) btn2.click(url2imge, inputs=text, outputs=image) gr.Examples(examples=examples, inputs=inputs, outputs=outputs, fn=infer) demo.queue().launch(debug=True, share=True, inline=False, show_error=True)