Upload utils/util_calculate_psnr_ssim.py
Browse files
utils/util_calculate_psnr_ssim.py
ADDED
@@ -0,0 +1,320 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -----------------------------------------------------------------------------------
|
2 |
+
# https://github.com/JingyunLiang/SwinIR/blob/main/utils/util_calculate_psnr_ssim.py
|
3 |
+
# -----------------------------------------------------------------------------------
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
def calculate_psnr(img1, img2, crop_border, input_order='HWC', test_y_channel=False):
|
10 |
+
"""Calculate PSNR (Peak Signal-to-Noise Ratio).
|
11 |
+
Ref: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
|
12 |
+
Args:
|
13 |
+
img1 (ndarray): Images with range [0, 255].
|
14 |
+
img2 (ndarray): Images with range [0, 255].
|
15 |
+
crop_border (int): Cropped pixels in each edge of an image. These
|
16 |
+
pixels are not involved in the PSNR calculation.
|
17 |
+
input_order (str): Whether the input order is 'HWC' or 'CHW'.
|
18 |
+
Default: 'HWC'.
|
19 |
+
test_y_channel (bool): Test on Y channel of YCbCr. Default: False.
|
20 |
+
Returns:
|
21 |
+
float: psnr result.
|
22 |
+
"""
|
23 |
+
|
24 |
+
assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.')
|
25 |
+
if input_order not in ['HWC', 'CHW']:
|
26 |
+
raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"')
|
27 |
+
img1 = reorder_image(img1, input_order=input_order)
|
28 |
+
img2 = reorder_image(img2, input_order=input_order)
|
29 |
+
img1 = img1.astype(np.float64)
|
30 |
+
img2 = img2.astype(np.float64)
|
31 |
+
|
32 |
+
if crop_border != 0:
|
33 |
+
img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]
|
34 |
+
img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]
|
35 |
+
|
36 |
+
if test_y_channel:
|
37 |
+
img1 = to_y_channel(img1)
|
38 |
+
img2 = to_y_channel(img2)
|
39 |
+
|
40 |
+
mse = np.mean((img1 - img2) ** 2)
|
41 |
+
if mse == 0:
|
42 |
+
return float('inf')
|
43 |
+
return 20. * np.log10(255. / np.sqrt(mse))
|
44 |
+
|
45 |
+
|
46 |
+
def _ssim(img1, img2):
|
47 |
+
"""Calculate SSIM (structural similarity) for one channel images.
|
48 |
+
It is called by func:`calculate_ssim`.
|
49 |
+
Args:
|
50 |
+
img1 (ndarray): Images with range [0, 255] with order 'HWC'.
|
51 |
+
img2 (ndarray): Images with range [0, 255] with order 'HWC'.
|
52 |
+
Returns:
|
53 |
+
float: ssim result.
|
54 |
+
"""
|
55 |
+
|
56 |
+
C1 = (0.01 * 255) ** 2
|
57 |
+
C2 = (0.03 * 255) ** 2
|
58 |
+
|
59 |
+
img1 = img1.astype(np.float64)
|
60 |
+
img2 = img2.astype(np.float64)
|
61 |
+
kernel = cv2.getGaussianKernel(11, 1.5)
|
62 |
+
window = np.outer(kernel, kernel.transpose())
|
63 |
+
|
64 |
+
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5]
|
65 |
+
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
|
66 |
+
mu1_sq = mu1 ** 2
|
67 |
+
mu2_sq = mu2 ** 2
|
68 |
+
mu1_mu2 = mu1 * mu2
|
69 |
+
sigma1_sq = cv2.filter2D(img1 ** 2, -1, window)[5:-5, 5:-5] - mu1_sq
|
70 |
+
sigma2_sq = cv2.filter2D(img2 ** 2, -1, window)[5:-5, 5:-5] - mu2_sq
|
71 |
+
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
|
72 |
+
|
73 |
+
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
|
74 |
+
return ssim_map.mean()
|
75 |
+
|
76 |
+
|
77 |
+
def calculate_ssim(img1, img2, crop_border, input_order='HWC', test_y_channel=False):
|
78 |
+
"""Calculate SSIM (structural similarity).
|
79 |
+
Ref:
|
80 |
+
Image quality assessment: From error visibility to structural similarity
|
81 |
+
The results are the same as that of the official released MATLAB code in
|
82 |
+
https://ece.uwaterloo.ca/~z70wang/research/ssim/.
|
83 |
+
For three-channel images, SSIM is calculated for each channel and then
|
84 |
+
averaged.
|
85 |
+
Args:
|
86 |
+
img1 (ndarray): Images with range [0, 255].
|
87 |
+
img2 (ndarray): Images with range [0, 255].
|
88 |
+
crop_border (int): Cropped pixels in each edge of an image. These
|
89 |
+
pixels are not involved in the SSIM calculation.
|
90 |
+
input_order (str): Whether the input order is 'HWC' or 'CHW'.
|
91 |
+
Default: 'HWC'.
|
92 |
+
test_y_channel (bool): Test on Y channel of YCbCr. Default: False.
|
93 |
+
Returns:
|
94 |
+
float: ssim result.
|
95 |
+
"""
|
96 |
+
|
97 |
+
assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.')
|
98 |
+
if input_order not in ['HWC', 'CHW']:
|
99 |
+
raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"')
|
100 |
+
img1 = reorder_image(img1, input_order=input_order)
|
101 |
+
img2 = reorder_image(img2, input_order=input_order)
|
102 |
+
img1 = img1.astype(np.float64)
|
103 |
+
img2 = img2.astype(np.float64)
|
104 |
+
|
105 |
+
if crop_border != 0:
|
106 |
+
img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]
|
107 |
+
img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]
|
108 |
+
|
109 |
+
if test_y_channel:
|
110 |
+
img1 = to_y_channel(img1)
|
111 |
+
img2 = to_y_channel(img2)
|
112 |
+
|
113 |
+
ssims = []
|
114 |
+
for i in range(img1.shape[2]):
|
115 |
+
ssims.append(_ssim(img1[..., i], img2[..., i]))
|
116 |
+
return np.array(ssims).mean()
|
117 |
+
|
118 |
+
|
119 |
+
def _blocking_effect_factor(im):
|
120 |
+
block_size = 8
|
121 |
+
|
122 |
+
block_horizontal_positions = torch.arange(7, im.shape[3] - 1, 8)
|
123 |
+
block_vertical_positions = torch.arange(7, im.shape[2] - 1, 8)
|
124 |
+
|
125 |
+
horizontal_block_difference = (
|
126 |
+
(im[:, :, :, block_horizontal_positions] - im[:, :, :, block_horizontal_positions + 1]) ** 2).sum(
|
127 |
+
3).sum(2).sum(1)
|
128 |
+
vertical_block_difference = (
|
129 |
+
(im[:, :, block_vertical_positions, :] - im[:, :, block_vertical_positions + 1, :]) ** 2).sum(3).sum(
|
130 |
+
2).sum(1)
|
131 |
+
|
132 |
+
nonblock_horizontal_positions = np.setdiff1d(torch.arange(0, im.shape[3] - 1), block_horizontal_positions)
|
133 |
+
nonblock_vertical_positions = np.setdiff1d(torch.arange(0, im.shape[2] - 1), block_vertical_positions)
|
134 |
+
|
135 |
+
horizontal_nonblock_difference = (
|
136 |
+
(im[:, :, :, nonblock_horizontal_positions] - im[:, :, :, nonblock_horizontal_positions + 1]) ** 2).sum(
|
137 |
+
3).sum(2).sum(1)
|
138 |
+
vertical_nonblock_difference = (
|
139 |
+
(im[:, :, nonblock_vertical_positions, :] - im[:, :, nonblock_vertical_positions + 1, :]) ** 2).sum(
|
140 |
+
3).sum(2).sum(1)
|
141 |
+
|
142 |
+
n_boundary_horiz = im.shape[2] * (im.shape[3] // block_size - 1)
|
143 |
+
n_boundary_vert = im.shape[3] * (im.shape[2] // block_size - 1)
|
144 |
+
boundary_difference = (horizontal_block_difference + vertical_block_difference) / (
|
145 |
+
n_boundary_horiz + n_boundary_vert)
|
146 |
+
|
147 |
+
n_nonboundary_horiz = im.shape[2] * (im.shape[3] - 1) - n_boundary_horiz
|
148 |
+
n_nonboundary_vert = im.shape[3] * (im.shape[2] - 1) - n_boundary_vert
|
149 |
+
nonboundary_difference = (horizontal_nonblock_difference + vertical_nonblock_difference) / (
|
150 |
+
n_nonboundary_horiz + n_nonboundary_vert)
|
151 |
+
|
152 |
+
scaler = np.log2(block_size) / np.log2(min([im.shape[2], im.shape[3]]))
|
153 |
+
bef = scaler * (boundary_difference - nonboundary_difference)
|
154 |
+
|
155 |
+
bef[boundary_difference <= nonboundary_difference] = 0
|
156 |
+
return bef
|
157 |
+
|
158 |
+
|
159 |
+
def calculate_psnrb(img1, img2, crop_border, input_order='HWC', test_y_channel=False):
|
160 |
+
"""Calculate PSNR-B (Peak Signal-to-Noise Ratio).
|
161 |
+
Ref: Quality assessment of deblocked images, for JPEG image deblocking evaluation
|
162 |
+
# https://gitlab.com/Queuecumber/quantization-guided-ac/-/blob/master/metrics/psnrb.py
|
163 |
+
Args:
|
164 |
+
img1 (ndarray): Images with range [0, 255].
|
165 |
+
img2 (ndarray): Images with range [0, 255].
|
166 |
+
crop_border (int): Cropped pixels in each edge of an image. These
|
167 |
+
pixels are not involved in the PSNR calculation.
|
168 |
+
input_order (str): Whether the input order is 'HWC' or 'CHW'.
|
169 |
+
Default: 'HWC'.
|
170 |
+
test_y_channel (bool): Test on Y channel of YCbCr. Default: False.
|
171 |
+
Returns:
|
172 |
+
float: psnr result.
|
173 |
+
"""
|
174 |
+
|
175 |
+
assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.')
|
176 |
+
if input_order not in ['HWC', 'CHW']:
|
177 |
+
raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"')
|
178 |
+
img1 = reorder_image(img1, input_order=input_order)
|
179 |
+
img2 = reorder_image(img2, input_order=input_order)
|
180 |
+
img1 = img1.astype(np.float64)
|
181 |
+
img2 = img2.astype(np.float64)
|
182 |
+
|
183 |
+
if crop_border != 0:
|
184 |
+
img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]
|
185 |
+
img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]
|
186 |
+
|
187 |
+
if test_y_channel:
|
188 |
+
img1 = to_y_channel(img1)
|
189 |
+
img2 = to_y_channel(img2)
|
190 |
+
|
191 |
+
# follow https://gitlab.com/Queuecumber/quantization-guided-ac/-/blob/master/metrics/psnrb.py
|
192 |
+
img1 = torch.from_numpy(img1).permute(2, 0, 1).unsqueeze(0) / 255.
|
193 |
+
img2 = torch.from_numpy(img2).permute(2, 0, 1).unsqueeze(0) / 255.
|
194 |
+
|
195 |
+
total = 0
|
196 |
+
for c in range(img1.shape[1]):
|
197 |
+
mse = torch.nn.functional.mse_loss(img1[:, c:c + 1, :, :], img2[:, c:c + 1, :, :], reduction='none')
|
198 |
+
bef = _blocking_effect_factor(img1[:, c:c + 1, :, :])
|
199 |
+
|
200 |
+
mse = mse.view(mse.shape[0], -1).mean(1)
|
201 |
+
total += 10 * torch.log10(1 / (mse + bef))
|
202 |
+
|
203 |
+
return float(total) / img1.shape[1]
|
204 |
+
|
205 |
+
|
206 |
+
def reorder_image(img, input_order='HWC'):
|
207 |
+
"""Reorder images to 'HWC' order.
|
208 |
+
If the input_order is (h, w), return (h, w, 1);
|
209 |
+
If the input_order is (c, h, w), return (h, w, c);
|
210 |
+
If the input_order is (h, w, c), return as it is.
|
211 |
+
Args:
|
212 |
+
img (ndarray): Input image.
|
213 |
+
input_order (str): Whether the input order is 'HWC' or 'CHW'.
|
214 |
+
If the input image shape is (h, w), input_order will not have
|
215 |
+
effects. Default: 'HWC'.
|
216 |
+
Returns:
|
217 |
+
ndarray: reordered image.
|
218 |
+
"""
|
219 |
+
|
220 |
+
if input_order not in ['HWC', 'CHW']:
|
221 |
+
raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' "'HWC' and 'CHW'")
|
222 |
+
if len(img.shape) == 2:
|
223 |
+
img = img[..., None]
|
224 |
+
if input_order == 'CHW':
|
225 |
+
img = img.transpose(1, 2, 0)
|
226 |
+
return img
|
227 |
+
|
228 |
+
|
229 |
+
def to_y_channel(img):
|
230 |
+
"""Change to Y channel of YCbCr.
|
231 |
+
Args:
|
232 |
+
img (ndarray): Images with range [0, 255].
|
233 |
+
Returns:
|
234 |
+
(ndarray): Images with range [0, 255] (float type) without round.
|
235 |
+
"""
|
236 |
+
img = img.astype(np.float32) / 255.
|
237 |
+
if img.ndim == 3 and img.shape[2] == 3:
|
238 |
+
img = bgr2ycbcr(img, y_only=True)
|
239 |
+
img = img[..., None]
|
240 |
+
return img * 255.
|
241 |
+
|
242 |
+
|
243 |
+
def _convert_input_type_range(img):
|
244 |
+
"""Convert the type and range of the input image.
|
245 |
+
It converts the input image to np.float32 type and range of [0, 1].
|
246 |
+
It is mainly used for pre-processing the input image in colorspace
|
247 |
+
convertion functions such as rgb2ycbcr and ycbcr2rgb.
|
248 |
+
Args:
|
249 |
+
img (ndarray): The input image. It accepts:
|
250 |
+
1. np.uint8 type with range [0, 255];
|
251 |
+
2. np.float32 type with range [0, 1].
|
252 |
+
Returns:
|
253 |
+
(ndarray): The converted image with type of np.float32 and range of
|
254 |
+
[0, 1].
|
255 |
+
"""
|
256 |
+
img_type = img.dtype
|
257 |
+
img = img.astype(np.float32)
|
258 |
+
if img_type == np.float32:
|
259 |
+
pass
|
260 |
+
elif img_type == np.uint8:
|
261 |
+
img /= 255.
|
262 |
+
else:
|
263 |
+
raise TypeError('The img type should be np.float32 or np.uint8, ' f'but got {img_type}')
|
264 |
+
return img
|
265 |
+
|
266 |
+
|
267 |
+
def _convert_output_type_range(img, dst_type):
|
268 |
+
"""Convert the type and range of the image according to dst_type.
|
269 |
+
It converts the image to desired type and range. If `dst_type` is np.uint8,
|
270 |
+
images will be converted to np.uint8 type with range [0, 255]. If
|
271 |
+
`dst_type` is np.float32, it converts the image to np.float32 type with
|
272 |
+
range [0, 1].
|
273 |
+
It is mainly used for post-processing images in colorspace convertion
|
274 |
+
functions such as rgb2ycbcr and ycbcr2rgb.
|
275 |
+
Args:
|
276 |
+
img (ndarray): The image to be converted with np.float32 type and
|
277 |
+
range [0, 255].
|
278 |
+
dst_type (np.uint8 | np.float32): If dst_type is np.uint8, it
|
279 |
+
converts the image to np.uint8 type with range [0, 255]. If
|
280 |
+
dst_type is np.float32, it converts the image to np.float32 type
|
281 |
+
with range [0, 1].
|
282 |
+
Returns:
|
283 |
+
(ndarray): The converted image with desired type and range.
|
284 |
+
"""
|
285 |
+
if dst_type not in (np.uint8, np.float32):
|
286 |
+
raise TypeError('The dst_type should be np.float32 or np.uint8, ' f'but got {dst_type}')
|
287 |
+
if dst_type == np.uint8:
|
288 |
+
img = img.round()
|
289 |
+
else:
|
290 |
+
img /= 255.
|
291 |
+
return img.astype(dst_type)
|
292 |
+
|
293 |
+
|
294 |
+
def bgr2ycbcr(img, y_only=False):
|
295 |
+
"""Convert a BGR image to YCbCr image.
|
296 |
+
The bgr version of rgb2ycbcr.
|
297 |
+
It implements the ITU-R BT.601 conversion for standard-definition
|
298 |
+
television. See more details in
|
299 |
+
https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
|
300 |
+
It differs from a similar function in cv2.cvtColor: `BGR <-> YCrCb`.
|
301 |
+
In OpenCV, it implements a JPEG conversion. See more details in
|
302 |
+
https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
|
303 |
+
Args:
|
304 |
+
img (ndarray): The input image. It accepts:
|
305 |
+
1. np.uint8 type with range [0, 255];
|
306 |
+
2. np.float32 type with range [0, 1].
|
307 |
+
y_only (bool): Whether to only return Y channel. Default: False.
|
308 |
+
Returns:
|
309 |
+
ndarray: The converted YCbCr image. The output image has the same type
|
310 |
+
and range as input image.
|
311 |
+
"""
|
312 |
+
img_type = img.dtype
|
313 |
+
img = _convert_input_type_range(img)
|
314 |
+
if y_only:
|
315 |
+
out_img = np.dot(img, [24.966, 128.553, 65.481]) + 16.0
|
316 |
+
else:
|
317 |
+
out_img = np.matmul(
|
318 |
+
img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) + [16, 128, 128]
|
319 |
+
out_img = _convert_output_type_range(out_img, img_type)
|
320 |
+
return out_img
|