Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,78 @@
|
|
1 |
from fastapi import FastAPI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
app = FastAPI()
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
@app.get("/")
|
6 |
def greet_json():
|
7 |
return {"Hello": "World!"}
|
|
|
1 |
from fastapi import FastAPI
|
2 |
+
from fastapi.responses import JSONResponse
|
3 |
+
import io
|
4 |
+
import joblib
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
import torchvision.transforms as transforms
|
8 |
+
from PIL import Image
|
9 |
+
import yaml
|
10 |
+
import traceback
|
11 |
+
import timm
|
12 |
+
import logging
|
13 |
+
from fastapi.logger import logger
|
14 |
+
|
15 |
|
16 |
app = FastAPI()
|
17 |
|
18 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
+
|
20 |
+
def load_model():
|
21 |
+
config = read_params(config_path)
|
22 |
+
model = timm.create_model('convnext_base.clip_laiona', pretrained=True, num_classes=3)
|
23 |
+
model_state_dict = torch.load('model.pth', map_location=device)
|
24 |
+
model.load_state_dict(model_state_dict)
|
25 |
+
model.eval()
|
26 |
+
return model
|
27 |
+
|
28 |
+
model = load_model()
|
29 |
+
|
30 |
+
def transform_image(image_bytes):
|
31 |
+
my_transforms = transforms.Compose([transforms.Resize(255),
|
32 |
+
transforms.CenterCrop(224),
|
33 |
+
transforms.ToTensor(),
|
34 |
+
transforms.Normalize(
|
35 |
+
[0.485, 0.456, 0.406],
|
36 |
+
[0.229, 0.224, 0.225])])
|
37 |
+
image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
|
38 |
+
return my_transforms(image).unsqueeze(0)
|
39 |
+
|
40 |
+
|
41 |
+
def get_prediction(data):
|
42 |
+
tensor = transform_image(data)
|
43 |
+
# model = app.package['model']
|
44 |
+
with torch.no_grad():
|
45 |
+
prediction = model(tensor)
|
46 |
+
prediction = reverse_mapping[prediction.argmax().item()]
|
47 |
+
return prediction
|
48 |
+
|
49 |
+
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}
|
50 |
+
|
51 |
+
def allowed_file(filename):
|
52 |
+
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
53 |
+
|
54 |
+
|
55 |
+
@app.post("/predict")
|
56 |
+
async def predict(file: UploadFile = File(...)):
|
57 |
+
"""
|
58 |
+
Perform prediction on the uploaded image
|
59 |
+
"""
|
60 |
+
|
61 |
+
logger.info('API predict called')
|
62 |
+
|
63 |
+
if not allowed_file(file.filename):
|
64 |
+
raise HTTPException(status_code=400, detail="Format not supported")
|
65 |
+
|
66 |
+
try:
|
67 |
+
img_bytes = await file.read()
|
68 |
+
class_name = get_prediction(img_bytes)
|
69 |
+
logger.info(f'Prediction: {class_name}')
|
70 |
+
return JSONResponse(content={"class_name": class_name})
|
71 |
+
except Exception as e:
|
72 |
+
logger.error(f'Error: {str(e)}')
|
73 |
+
return JSONResponse(content={"error": str(e), "trace": traceback.format_exc()}, status_code=500)
|
74 |
+
|
75 |
+
|
76 |
@app.get("/")
|
77 |
def greet_json():
|
78 |
return {"Hello": "World!"}
|