Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -20,6 +20,7 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
20 |
|
21 |
class_mapping = {'tb': 0, 'healthy': 1, 'sick_but_no_tb': 2}
|
22 |
reverse_mapping = {v: k for k, v in class_mapping.items()}
|
|
|
23 |
|
24 |
def load_model():
|
25 |
# config = read_params(config_path)
|
@@ -99,9 +100,9 @@ def predict(inp):
|
|
99 |
inp = transforms.ToTensor()(inp).unsqueeze(0)
|
100 |
with torch.no_grad():
|
101 |
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
|
102 |
-
|
103 |
-
prediction = reverse_mapping[prediction]
|
104 |
-
return
|
105 |
|
106 |
|
107 |
import gradio as gr
|
|
|
20 |
|
21 |
class_mapping = {'tb': 0, 'healthy': 1, 'sick_but_no_tb': 2}
|
22 |
reverse_mapping = {v: k for k, v in class_mapping.items()}
|
23 |
+
labels = class_mapping.keys()
|
24 |
|
25 |
def load_model():
|
26 |
# config = read_params(config_path)
|
|
|
100 |
inp = transforms.ToTensor()(inp).unsqueeze(0)
|
101 |
with torch.no_grad():
|
102 |
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
|
103 |
+
confidences = {labels[i]: float(prediction[i]) for i in range(3)}
|
104 |
+
# prediction = reverse_mapping[prediction]
|
105 |
+
return confidences
|
106 |
|
107 |
|
108 |
import gradio as gr
|