dmusingu commited on
Commit
2cb721d
1 Parent(s): a8a4c12

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -3
app.py CHANGED
@@ -20,6 +20,7 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
20
 
21
  class_mapping = {'tb': 0, 'healthy': 1, 'sick_but_no_tb': 2}
22
  reverse_mapping = {v: k for k, v in class_mapping.items()}
 
23
 
24
  def load_model():
25
  # config = read_params(config_path)
@@ -99,9 +100,9 @@ def predict(inp):
99
  inp = transforms.ToTensor()(inp).unsqueeze(0)
100
  with torch.no_grad():
101
  prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
102
- # confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
103
- prediction = reverse_mapping[prediction]
104
- return prediction
105
 
106
 
107
  import gradio as gr
 
20
 
21
  class_mapping = {'tb': 0, 'healthy': 1, 'sick_but_no_tb': 2}
22
  reverse_mapping = {v: k for k, v in class_mapping.items()}
23
+ labels = class_mapping.keys()
24
 
25
  def load_model():
26
  # config = read_params(config_path)
 
100
  inp = transforms.ToTensor()(inp).unsqueeze(0)
101
  with torch.no_grad():
102
  prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
103
+ confidences = {labels[i]: float(prediction[i]) for i in range(3)}
104
+ # prediction = reverse_mapping[prediction]
105
+ return confidences
106
 
107
 
108
  import gradio as gr