from pathlib import Path from bark.model_fine import FineGPT, FineGPTConfig from bark.model import GPT, GPTConfig from huggingface_hub import hf_hub_download from typing import Type, TypeVar from transformers import BertTokenizer from scipy.special import softmax from encodec import EncodecModel import logging import torch import os import torch.nn as nn import torch.nn.functional as F import re import numpy as np import contextlib import funcy import tqdm import numpy as np logger = logging.getLogger('bark_model_load') def set_bark_model_load_logger(l): global logger logger = l if ( torch.cuda.is_available() and hasattr(torch.cuda, "amp") and hasattr(torch.cuda.amp, "autocast") and hasattr(torch.cuda, "is_bf16_supported") and torch.cuda.is_bf16_supported() ): autocast = funcy.partial(torch.cuda.amp.autocast, dtype=torch.bfloat16) else: @contextlib.contextmanager def autocast(): yield class InferenceContext: def __init__(self, benchmark=False): # we can't expect inputs to be the same length, so disable benchmarking by default self._chosen_cudnn_benchmark = benchmark self._cudnn_benchmark = None def __enter__(self): self._cudnn_benchmark = torch.backends.cudnn.benchmark torch.backends.cudnn.benchmark = self._chosen_cudnn_benchmark def __exit__(self, exc_type, exc_value, exc_traceback): torch.backends.cudnn.benchmark = self._cudnn_benchmark @contextlib.contextmanager def _inference_mode(): with InferenceContext(), torch.inference_mode(), torch.no_grad(), autocast(): yield # 定义一个泛型类型变量 G = TypeVar('G', bound='GPT') C = TypeVar('C', bound='GPTConfig') class ModelType: def __init__(self, model_type: str, model_class: Type[G], model_config: Type[C]): """ 模型类型适配 :param model_type: :param model_class: :param model_config: """ self.model_type = model_type self.model_class = model_class self.model_config = model_config CONTEXT_WINDOW_SIZE = 1024 SEMANTIC_RATE_HZ = 49.9 SEMANTIC_VOCAB_SIZE = 10_000 CODEBOOK_SIZE = 1024 N_COARSE_CODEBOOKS = 2 N_FINE_CODEBOOKS = 8 COARSE_RATE_HZ = 75 SAMPLE_RATE = 24_000 REMOTE_MODEL_PATHS = { "text": { "repo_id": "suno/bark", "file_name": "text_2.pt", }, "coarse": { "repo_id": "suno/bark", "file_name": "coarse_2.pt", }, "fine": { "repo_id": "suno/bark", "file_name": "fine_2.pt", }, } SUPPORTED_LANGS = [ ("English", "en"), ("German", "de"), ("Spanish", "es"), ("French", "fr"), ("Hindi", "hi"), ("Italian", "it"), ("Japanese", "ja"), ("Korean", "ko"), ("Polish", "pl"), ("Portuguese", "pt"), ("Russian", "ru"), ("Turkish", "tr"), ("Chinese", "zh"), ] # init prompt_speaker_np ALLOWED_PROMPTS = {"announcer"} for _, lang in SUPPORTED_LANGS: for prefix in ("", f"v2{os.path.sep}"): for n in range(10): ALLOWED_PROMPTS.add(f"{prefix}{lang}_speaker_{n}") TEXT_ENCODING_OFFSET = 10_048 SEMANTIC_PAD_TOKEN = 10_000 TEXT_PAD_TOKEN = 129_595 SEMANTIC_INFER_TOKEN = 129_599 COARSE_SEMANTIC_PAD_TOKEN = 12_048 COARSE_INFER_TOKEN = 12_050 def _download(self, from_hf_path, file_name, local_dir): os.makedirs(local_dir, exist_ok=True) hf_hub_download(repo_id=from_hf_path, filename=file_name, local_dir=local_dir) def _load_codec_model(device,codec_repository_path: str): model = EncodecModel.encodec_model_24khz(pretrained=True, repository=Path(codec_repository_path)) model.set_target_bandwidth(6.0) model.eval() model.to(device) return model def _normalize_whitespace(text): return re.sub(r"\s+", " ", text).strip() def _load_history_prompt(history_prompt_dir: str, history_prompt_input: str): # make sure this works on non-ubuntu history_prompt_input = os.path.join(*history_prompt_input.split("/")) if history_prompt_input not in ALLOWED_PROMPTS: raise ValueError("history prompt not found") history_prompt = np.load( os.path.join(history_prompt_dir, "assets", "prompts", f"{history_prompt_input}.npz") ) return history_prompt def _flatten_codebooks(arr, offset_size=CODEBOOK_SIZE): assert len(arr.shape) == 2 arr = arr.copy() if offset_size is not None: for n in range(1, arr.shape[0]): arr[n, :] += offset_size * n flat_arr = arr.ravel("F") return flat_arr class ModelCheckPointInfo: _model_type: ModelType _model: nn.Module _model_path: str def __init__(self, model_type: ModelType): self._model_type = model_type @property def model_type(self) -> ModelType: return self._model_type @property def model(self) -> nn.Module: return self._model @property def model_path(self) -> str: return self._model_path @model.setter def model(self, value): self._model = value @model_path.setter def model_path(self, value): self._model_path = value class BarkModelLoader: _text_model: ModelCheckPointInfo = ModelCheckPointInfo( model_type=ModelType(model_type="text_model", model_class=GPT, model_config=GPTConfig)) _coarse_model: ModelCheckPointInfo = ModelCheckPointInfo( model_type=ModelType(model_type="coarse_model", model_class=GPT, model_config=GPTConfig)) _fine_model: ModelCheckPointInfo = ModelCheckPointInfo( model_type=ModelType(model_type="fine_model", model_class=FineGPT, model_config=FineGPTConfig)) _tokenizer: BertTokenizer _tokenizer_path: str = "bert-base-multilingual-cased" _encodec: EncodecModel def __init__(self, codec_repository_path: str, tokenizer_path: str, text_path: str, coarse_path: str, fine_path: str, device: str): if tokenizer_path: self._tokenizer_path = tokenizer_path logger.info(f"BertTokenizer load.") self._tokenizer = BertTokenizer.from_pretrained(self._tokenizer_path) logger.info(f"BertTokenizer loaded") logger.info(f"_encodec load.") self._encodec = _load_codec_model(device=device, codec_repository_path=codec_repository_path) logger.info(f"_encodec loaded") self._text_model.model_path = text_path self._coarse_model.model_path = coarse_path self._fine_model.model_path = fine_path # if not os.path.exists(self._text_model.model_path): # model_info = REMOTE_MODEL_PATHS['text'] # logger.info(f"text model not found, downloading into `{self._text_model.model_path}`.") # # _download(model_info["repo_id"], model_info["file_name"], self._text_model.model_path) # if not os.path.exists(self._coarse_model.model_path): # model_info = REMOTE_MODEL_PATHS['coarse'] # logger.info(f"coarse model not found, downloading into `{self._coarse_model.model_path}`.") # _download(model_info["repo_id"], model_info["file_name"], self._coarse_model.model_path) # if not os.path.exists(self._fine_model.model_path): # model_info = REMOTE_MODEL_PATHS['fine'] # logger.info(f"fine model not found, downloading into `{self._fine_model.model_path}`.") # _download(model_info["repo_id"], model_info["file_name"], self._fine_model.model_path) self._load_moad(model_type=self._text_model.model_type, ckpt_path=self._text_model.model_path, device=device) self._load_moad(model_type=self._coarse_model.model_type, ckpt_path=self._coarse_model.model_path, device=device) self._load_moad(model_type=self._fine_model.model_type, ckpt_path=self._fine_model.model_path, device=device) def _load_moad(self, model_type: ModelType, ckpt_path: str, device: str): if not os.path.exists(self._fine_model.model_path): raise RuntimeError("loader model path is not exists") device = torch.device(device) checkpoint = torch.load(ckpt_path, map_location=device) # this is a hack model_args = checkpoint["model_args"] if "input_vocab_size" not in model_args: model_args["input_vocab_size"] = model_args["vocab_size"] model_args["output_vocab_size"] = model_args["vocab_size"] del model_args["vocab_size"] gptconf = model_type.model_config(**checkpoint["model_args"]) model = model_type.model_class(gptconf) state_dict = checkpoint["model"] # fixup checkpoint unwanted_prefix = "_orig_mod." for k, v in list(state_dict.items()): if k.startswith(unwanted_prefix): state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k) extra_keys = set(state_dict.keys()) - set(model.state_dict().keys()) extra_keys = set([k for k in extra_keys if not k.endswith(".attn.bias")]) missing_keys = set(model.state_dict().keys()) - set(state_dict.keys()) missing_keys = set([k for k in missing_keys if not k.endswith(".attn.bias")]) if len(extra_keys) != 0: raise ValueError(f"extra keys found: {extra_keys}") if len(missing_keys) != 0: raise ValueError(f"missing keys: {missing_keys}") model.load_state_dict(state_dict, strict=False) n_params = model.get_num_params() val_loss = checkpoint["best_val_loss"].item() logger.info( f"model {model_type.model_type} loaded: {round(n_params / 1e6, 1)}M params, {round(val_loss, 3)} loss") model.eval() model.to(device) del checkpoint, state_dict if model_type.model_type == "text_model": self._text_model.model = model elif model_type.model_type == "coarse_model": self._coarse_model.model = model elif model_type.model_type == "fine_model": self._fine_model.model = model def generate_text_semantic( self, text, history_prompt=None, history_prompt_dir=None, temp=0.7, top_k=None, top_p=None, silent=False, min_eos_p=0.2, max_gen_duration_s=None, allow_early_stop=True, use_kv_caching=False, ): """Generate semantic tokens from text.""" assert isinstance(text, str) text = _normalize_whitespace(text) assert len(text.strip()) > 0 if history_prompt is not None: history_prompt = _load_history_prompt(history_prompt_dir=history_prompt_dir, history_prompt_input=history_prompt) semantic_history = history_prompt["semantic_prompt"] assert ( isinstance(semantic_history, np.ndarray) and len(semantic_history.shape) == 1 and len(semantic_history) > 0 and semantic_history.min() >= 0 and semantic_history.max() <= SEMANTIC_VOCAB_SIZE - 1 ) else: semantic_history = None model = self._text_model.model tokenizer = self._tokenizer encoded_text = np.array(tokenizer.encode(text, add_special_tokens=False)) + TEXT_ENCODING_OFFSET # if OFFLOAD_CPU: # model.to(models_devices["text"]) device = next(model.parameters()).device if len(encoded_text) > 256: p = round((len(encoded_text) - 256) / len(encoded_text) * 100, 1) logger.warning(f"warning, text too long, lopping of last {p}%") encoded_text = encoded_text[:256] encoded_text = np.pad( encoded_text, (0, 256 - len(encoded_text)), constant_values=TEXT_PAD_TOKEN, mode="constant", ) if semantic_history is not None: semantic_history = semantic_history.astype(np.int64) # lop off if history is too long, pad if needed semantic_history = semantic_history[-256:] semantic_history = np.pad( semantic_history, (0, 256 - len(semantic_history)), constant_values=SEMANTIC_PAD_TOKEN, mode="constant", ) else: semantic_history = np.array([SEMANTIC_PAD_TOKEN] * 256) x = torch.from_numpy( np.hstack([ encoded_text, semantic_history, np.array([SEMANTIC_INFER_TOKEN]) ]).astype(np.int64) )[None] assert x.shape[1] == 256 + 256 + 1 with _inference_mode(): x = x.to(device) n_tot_steps = 768 # custom tqdm updates since we don't know when eos will occur pbar = tqdm.tqdm(disable=silent, total=n_tot_steps) pbar_state = 0 tot_generated_duration_s = 0 kv_cache = None for n in range(n_tot_steps): if use_kv_caching and kv_cache is not None: x_input = x[:, [-1]] else: x_input = x logits, kv_cache = model( x_input, merge_context=True, use_cache=use_kv_caching, past_kv=kv_cache ) relevant_logits = logits[0, 0, :SEMANTIC_VOCAB_SIZE] if allow_early_stop: relevant_logits = torch.hstack( (relevant_logits, logits[0, 0, [SEMANTIC_PAD_TOKEN]]) # eos ) if top_p is not None: # faster to convert to numpy original_device = relevant_logits.device relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy() sorted_indices = np.argsort(relevant_logits)[::-1] sorted_logits = relevant_logits[sorted_indices] cumulative_probs = np.cumsum(softmax(sorted_logits)) sorted_indices_to_remove = cumulative_probs > top_p sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy() sorted_indices_to_remove[0] = False relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf relevant_logits = torch.from_numpy(relevant_logits) relevant_logits = relevant_logits.to(original_device) if top_k is not None: v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1))) relevant_logits[relevant_logits < v[-1]] = -float("Inf") probs = F.softmax(relevant_logits / temp, dim=-1) item_next = torch.multinomial(probs, num_samples=1).to(torch.int32) if allow_early_stop and ( item_next == SEMANTIC_VOCAB_SIZE or (min_eos_p is not None and probs[-1] >= min_eos_p) ): # eos found, so break pbar.update(n - pbar_state) break x = torch.cat((x, item_next[None]), dim=1) tot_generated_duration_s += 1 / SEMANTIC_RATE_HZ if max_gen_duration_s is not None and tot_generated_duration_s > max_gen_duration_s: pbar.update(n - pbar_state) break if n == n_tot_steps - 1: pbar.update(n - pbar_state) break del logits, relevant_logits, probs, item_next if n > pbar_state: if n > pbar.total: pbar.total = n pbar.update(n - pbar_state) pbar_state = n pbar.total = n pbar.refresh() pbar.close() out = x.detach().cpu().numpy().squeeze()[256 + 256 + 1:] assert all(0 <= out) and all(out < SEMANTIC_VOCAB_SIZE) return out def generate_coarse( self, x_semantic, history_prompt=None, history_prompt_dir=None, temp=0.7, top_k=None, top_p=None, silent=False, max_coarse_history=630, # min 60 (faster), max 630 (more context) sliding_window_len=60, use_kv_caching=False, ): """Generate coarse audio codes from semantic tokens.""" assert ( isinstance(x_semantic, np.ndarray) and len(x_semantic.shape) == 1 and len(x_semantic) > 0 and x_semantic.min() >= 0 and x_semantic.max() <= SEMANTIC_VOCAB_SIZE - 1 ) assert 60 <= max_coarse_history <= 630 assert max_coarse_history + sliding_window_len <= 1024 - 256 semantic_to_coarse_ratio = COARSE_RATE_HZ / SEMANTIC_RATE_HZ * N_COARSE_CODEBOOKS max_semantic_history = int(np.floor(max_coarse_history / semantic_to_coarse_ratio)) if history_prompt is not None: history_prompt = _load_history_prompt(history_prompt_dir=history_prompt_dir,history_prompt_input=history_prompt) x_semantic_history = history_prompt["semantic_prompt"] x_coarse_history = history_prompt["coarse_prompt"] assert ( isinstance(x_semantic_history, np.ndarray) and len(x_semantic_history.shape) == 1 and len(x_semantic_history) > 0 and x_semantic_history.min() >= 0 and x_semantic_history.max() <= SEMANTIC_VOCAB_SIZE - 1 and isinstance(x_coarse_history, np.ndarray) and len(x_coarse_history.shape) == 2 and x_coarse_history.shape[0] == N_COARSE_CODEBOOKS and x_coarse_history.shape[-1] >= 0 and x_coarse_history.min() >= 0 and x_coarse_history.max() <= CODEBOOK_SIZE - 1 and ( round(x_coarse_history.shape[-1] / len(x_semantic_history), 1) == round(semantic_to_coarse_ratio / N_COARSE_CODEBOOKS, 1) ) ) x_coarse_history = _flatten_codebooks(x_coarse_history) + SEMANTIC_VOCAB_SIZE # trim histories correctly n_semantic_hist_provided = np.min( [ max_semantic_history, len(x_semantic_history) - len(x_semantic_history) % 2, int(np.floor(len(x_coarse_history) / semantic_to_coarse_ratio)), ] ) n_coarse_hist_provided = int(round(n_semantic_hist_provided * semantic_to_coarse_ratio)) x_semantic_history = x_semantic_history[-n_semantic_hist_provided:].astype(np.int32) x_coarse_history = x_coarse_history[-n_coarse_hist_provided:].astype(np.int32) # TODO: bit of a hack for time alignment (sounds better) x_coarse_history = x_coarse_history[:-2] else: x_semantic_history = np.array([], dtype=np.int32) x_coarse_history = np.array([], dtype=np.int32) model = self._coarse_model.model # if OFFLOAD_CPU: # model.to(models_devices["coarse"]) device = next(model.parameters()).device # start loop n_steps = int( round( np.floor(len(x_semantic) * semantic_to_coarse_ratio / N_COARSE_CODEBOOKS) * N_COARSE_CODEBOOKS ) ) assert n_steps > 0 and n_steps % N_COARSE_CODEBOOKS == 0 x_semantic = np.hstack([x_semantic_history, x_semantic]).astype(np.int32) x_coarse = x_coarse_history.astype(np.int32) base_semantic_idx = len(x_semantic_history) with _inference_mode(): x_semantic_in = torch.from_numpy(x_semantic)[None].to(device) x_coarse_in = torch.from_numpy(x_coarse)[None].to(device) n_window_steps = int(np.ceil(n_steps / sliding_window_len)) n_step = 0 for _ in tqdm.tqdm(range(n_window_steps), total=n_window_steps, disable=silent): semantic_idx = base_semantic_idx + int(round(n_step / semantic_to_coarse_ratio)) # pad from right side x_in = x_semantic_in[:, np.max([0, semantic_idx - max_semantic_history]):] x_in = x_in[:, :256] x_in = F.pad( x_in, (0, 256 - x_in.shape[-1]), "constant", COARSE_SEMANTIC_PAD_TOKEN, ) x_in = torch.hstack( [ x_in, torch.tensor([COARSE_INFER_TOKEN])[None].to(device), x_coarse_in[:, -max_coarse_history:], ] ) kv_cache = None for _ in range(sliding_window_len): if n_step >= n_steps: continue is_major_step = n_step % N_COARSE_CODEBOOKS == 0 if use_kv_caching and kv_cache is not None: x_input = x_in[:, [-1]] else: x_input = x_in logits, kv_cache = model(x_input, use_cache=use_kv_caching, past_kv=kv_cache) logit_start_idx = ( SEMANTIC_VOCAB_SIZE + (1 - int(is_major_step)) * CODEBOOK_SIZE ) logit_end_idx = ( SEMANTIC_VOCAB_SIZE + (2 - int(is_major_step)) * CODEBOOK_SIZE ) relevant_logits = logits[0, 0, logit_start_idx:logit_end_idx] if top_p is not None: # faster to convert to numpy original_device = relevant_logits.device relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy() sorted_indices = np.argsort(relevant_logits)[::-1] sorted_logits = relevant_logits[sorted_indices] cumulative_probs = np.cumsum(softmax(sorted_logits)) sorted_indices_to_remove = cumulative_probs > top_p sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy() sorted_indices_to_remove[0] = False relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf relevant_logits = torch.from_numpy(relevant_logits) relevant_logits = relevant_logits.to(original_device) if top_k is not None: v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1))) relevant_logits[relevant_logits < v[-1]] = -float("Inf") probs = F.softmax(relevant_logits / temp, dim=-1) item_next = torch.multinomial(probs, num_samples=1).to(torch.int32) item_next += logit_start_idx x_coarse_in = torch.cat((x_coarse_in, item_next[None]), dim=1) x_in = torch.cat((x_in, item_next[None]), dim=1) del logits, relevant_logits, probs, item_next n_step += 1 del x_in del x_semantic_in # if OFFLOAD_CPU: # model.to("cpu") gen_coarse_arr = x_coarse_in.detach().cpu().numpy().squeeze()[len(x_coarse_history):] del x_coarse_in assert len(gen_coarse_arr) == n_steps gen_coarse_audio_arr = gen_coarse_arr.reshape(-1, N_COARSE_CODEBOOKS).T - SEMANTIC_VOCAB_SIZE for n in range(1, N_COARSE_CODEBOOKS): gen_coarse_audio_arr[n, :] -= n * CODEBOOK_SIZE # _clear_cuda_cache() return gen_coarse_audio_arr def generate_fine( self, x_coarse_gen, history_prompt=None, history_prompt_dir=None, temp=0.5, silent=True, ): """Generate full audio codes from coarse audio codes.""" assert ( isinstance(x_coarse_gen, np.ndarray) and len(x_coarse_gen.shape) == 2 and 1 <= x_coarse_gen.shape[0] <= N_FINE_CODEBOOKS - 1 and x_coarse_gen.shape[1] > 0 and x_coarse_gen.min() >= 0 and x_coarse_gen.max() <= CODEBOOK_SIZE - 1 ) if history_prompt is not None: history_prompt = _load_history_prompt(history_prompt_dir=history_prompt_dir,history_prompt_input=history_prompt) x_fine_history = history_prompt["fine_prompt"] assert ( isinstance(x_fine_history, np.ndarray) and len(x_fine_history.shape) == 2 and x_fine_history.shape[0] == N_FINE_CODEBOOKS and x_fine_history.shape[1] >= 0 and x_fine_history.min() >= 0 and x_fine_history.max() <= CODEBOOK_SIZE - 1 ) else: x_fine_history = None n_coarse = x_coarse_gen.shape[0] model = self._fine_model.model # if OFFLOAD_CPU: # model.to(models_devices["fine"]) device = next(model.parameters()).device # make input arr in_arr = np.vstack( [ x_coarse_gen, np.zeros((N_FINE_CODEBOOKS - n_coarse, x_coarse_gen.shape[1])) + CODEBOOK_SIZE, # padding ] ).astype(np.int32) # prepend history if available (max 512) if x_fine_history is not None: x_fine_history = x_fine_history.astype(np.int32) in_arr = np.hstack( [ x_fine_history[:, -512:].astype(np.int32), in_arr, ] ) n_history = x_fine_history[:, -512:].shape[1] else: n_history = 0 n_remove_from_end = 0 # need to pad if too short (since non-causal model) if in_arr.shape[1] < 1024: n_remove_from_end = 1024 - in_arr.shape[1] in_arr = np.hstack( [ in_arr, np.zeros((N_FINE_CODEBOOKS, n_remove_from_end), dtype=np.int32) + CODEBOOK_SIZE, ] ) # we can be lazy about fractional loop and just keep overwriting codebooks n_loops = np.max([0, int(np.ceil((x_coarse_gen.shape[1] - (1024 - n_history)) / 512))]) + 1 with _inference_mode(): in_arr = torch.tensor(in_arr.T).to(device) for n in tqdm.tqdm(range(n_loops), disable=silent): start_idx = np.min([n * 512, in_arr.shape[0] - 1024]) start_fill_idx = np.min([n_history + n * 512, in_arr.shape[0] - 512]) rel_start_fill_idx = start_fill_idx - start_idx in_buffer = in_arr[start_idx: start_idx + 1024, :][None] for nn in range(n_coarse, N_FINE_CODEBOOKS): logits = model(nn, in_buffer) if temp is None: relevant_logits = logits[0, rel_start_fill_idx:, :CODEBOOK_SIZE] codebook_preds = torch.argmax(relevant_logits, -1) else: relevant_logits = logits[0, :, :CODEBOOK_SIZE] / temp probs = F.softmax(relevant_logits, dim=-1) codebook_preds = torch.multinomial( probs[rel_start_fill_idx:1024], num_samples=1 ).reshape(-1) codebook_preds = codebook_preds.to(torch.int32) in_buffer[0, rel_start_fill_idx:, nn] = codebook_preds del logits, codebook_preds # transfer over info into model_in and convert to numpy for nn in range(n_coarse, N_FINE_CODEBOOKS): in_arr[ start_fill_idx: start_fill_idx + (1024 - rel_start_fill_idx), nn ] = in_buffer[0, rel_start_fill_idx:, nn] del in_buffer gen_fine_arr = in_arr.detach().cpu().numpy().squeeze().T del in_arr # if OFFLOAD_CPU: # model.to("cpu") gen_fine_arr = gen_fine_arr[:, n_history:] if n_remove_from_end > 0: gen_fine_arr = gen_fine_arr[:, :-n_remove_from_end] assert gen_fine_arr.shape[-1] == x_coarse_gen.shape[-1] # _clear_cuda_cache() return gen_fine_arr def codec_decode(self, fine_tokens): """Turn quantized audio codes into audio array using encodec.""" model = self._encodec device = next(model.parameters()).device arr = torch.from_numpy(fine_tokens)[None] arr = arr.to(device) arr = arr.transpose(0, 1) emb = model.quantizer.decode(arr) out = model.decoder(emb) audio_arr = out.detach().cpu().numpy().squeeze() del arr, emb, out return audio_arr if __name__ == '__main__': bark_load = BarkModelLoader(tokenizer_path='/media/checkpoint/bark/bert-base-multilingual-cased/', text_path='/media/checkpoint/bark/suno/bark_v0/text_2.pt', coarse_path='/media/checkpoint/bark/suno/bark_v0/coarse_2.pt', fine_path='/media/checkpoint/bark/suno/bark_v0/fine_2.pt') print(bark_load)