Spaces:
Running
Running
import sys | |
import asyncio | |
from io import BytesIO | |
from fairseq import checkpoint_utils | |
import torch | |
import edge_tts | |
import librosa | |
# https://github.com/fumiama/Retrieval-based-Voice-Conversion-WebUI/blob/main/config.py#L43-L55 # noqa | |
def has_mps() -> bool: | |
if sys.platform != "darwin": | |
return False | |
else: | |
if not getattr(torch, 'has_mps', False): | |
return False | |
try: | |
torch.zeros(1).to(torch.device("mps")) | |
return True | |
except Exception: | |
return False | |
def is_half(device: str) -> bool: | |
if not device.startswith('cuda'): | |
return False | |
else: | |
gpu_name = torch.cuda.get_device_name( | |
int(device.split(':')[-1]) | |
).upper() | |
# ...regex? | |
if ( | |
('16' in gpu_name and 'V100' not in gpu_name) | |
or 'P40' in gpu_name | |
or '1060' in gpu_name | |
or '1070' in gpu_name | |
or '1080' in gpu_name | |
): | |
return False | |
return True | |
def load_hubert_model(device: str, model_path: str = 'hubert_base.pt'): | |
model = checkpoint_utils.load_model_ensemble_and_task( | |
[model_path] | |
)[0][0].to(device) | |
if is_half(device): | |
return model.half() | |
else: | |
return model.float() | |
async def call_edge_tts(speaker_name: str, text: str): | |
tts_com = edge_tts.Communicate(text, speaker_name) | |
tts_raw = b'' | |
# Stream TTS audio to bytes | |
async for chunk in tts_com.stream(): | |
if chunk['type'] == 'audio': | |
tts_raw += chunk['data'] | |
# Convert mp3 stream to wav | |
ffmpeg_proc = await asyncio.create_subprocess_exec( | |
'ffmpeg', | |
'-f', 'mp3', | |
'-i', '-', | |
'-f', 'wav', | |
'-loglevel', 'error', | |
'-', | |
stdin=asyncio.subprocess.PIPE, | |
stdout=asyncio.subprocess.PIPE | |
) | |
(tts_wav, _) = await ffmpeg_proc.communicate(tts_raw) | |
return librosa.load(BytesIO(tts_wav)) | |
async def call_edge_tts_config(speaker_name: str, text: str, rate: str, volume: str): | |
tts_com = edge_tts.Communicate(text=text, voice=speaker_name, rate=rate, volume=volume) | |
tts_raw = b'' | |
# Stream TTS audio to bytes | |
async for chunk in tts_com.stream(): | |
if chunk['type'] == 'audio': | |
tts_raw += chunk['data'] | |
# Convert mp3 stream to wav | |
ffmpeg_proc = await asyncio.create_subprocess_exec( | |
'ffmpeg', | |
'-f', 'mp3', | |
'-i', '-', | |
'-f', 'wav', | |
'-loglevel', 'error', | |
'-', | |
stdin=asyncio.subprocess.PIPE, | |
stdout=asyncio.subprocess.PIPE | |
) | |
(tts_wav, _) = await ffmpeg_proc.communicate(tts_raw) | |
return librosa.load(BytesIO(tts_wav)) | |