dkebudi commited on
Commit
0ec5ae3
·
verified ·
1 Parent(s): 8e61a1b

remove resizing and cropping

Browse files
train_dreambooth_lora_sdxl_advanced.py CHANGED
@@ -1070,8 +1070,8 @@ class DreamBoothDataset(Dataset):
1070
  self.original_sizes = []
1071
  self.crop_top_lefts = []
1072
  self.pixel_values = []
1073
- train_resize = transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR)
1074
- train_crop = transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size)
1075
  train_flip = transforms.RandomHorizontalFlip(p=1.0)
1076
  train_transforms = transforms.Compose(
1077
  [
@@ -1087,18 +1087,20 @@ class DreamBoothDataset(Dataset):
1087
  if not image.mode == "RGB":
1088
  image = image.convert("RGB")
1089
  self.original_sizes.append((image.height, image.width))
1090
- image = train_resize(image)
1091
 
1092
  if not single_image and args.random_flip and random.random() < 0.5:
1093
  # flip
1094
  image = train_flip(image)
1095
  if args.center_crop or single_image:
1096
- y1 = max(0, int(round((image.height - args.resolution) / 2.0)))
1097
- x1 = max(0, int(round((image.width - args.resolution) / 2.0)))
1098
- image = train_crop(image)
 
1099
  else:
1100
- y1, x1, h, w = train_crop.get_params(image, (args.resolution, args.resolution))
1101
- image = crop(image, y1, x1, h, w)
 
1102
  crop_top_left = (y1, x1)
1103
  self.crop_top_lefts.append(crop_top_left)
1104
  image = train_transforms(image)
@@ -1121,17 +1123,17 @@ class DreamBoothDataset(Dataset):
1121
  if not image.mode == "RGB":
1122
  image = image.convert("RGB")
1123
  self.original_sizes_class_imgs.append((image.height, image.width))
1124
- image = train_resize(image)
1125
  if args.random_flip and random.random() < 0.5:
1126
  # flip
1127
  image = train_flip(image)
1128
  if args.center_crop:
1129
- y1 = max(0, int(round((image.height - args.resolution) / 2.0)))
1130
- x1 = max(0, int(round((image.width - args.resolution) / 2.0)))
1131
- image = train_crop(image)
1132
  else:
1133
- y1, x1, h, w = train_crop.get_params(image, (args.resolution, args.resolution))
1134
- image = crop(image, y1, x1, h, w)
1135
  crop_top_left = (y1, x1)
1136
  self.crop_top_lefts_class_imgs.append(crop_top_left)
1137
  image = train_transforms(image)
@@ -1147,8 +1149,8 @@ class DreamBoothDataset(Dataset):
1147
 
1148
  self.image_transforms = transforms.Compose(
1149
  [
1150
- transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
1151
- transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
1152
  transforms.ToTensor(),
1153
  transforms.Normalize([0.5], [0.5]),
1154
  ]
 
1070
  self.original_sizes = []
1071
  self.crop_top_lefts = []
1072
  self.pixel_values = []
1073
+ #train_resize = transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR)
1074
+ #train_crop = transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size)
1075
  train_flip = transforms.RandomHorizontalFlip(p=1.0)
1076
  train_transforms = transforms.Compose(
1077
  [
 
1087
  if not image.mode == "RGB":
1088
  image = image.convert("RGB")
1089
  self.original_sizes.append((image.height, image.width))
1090
+ #image = train_resize(image)
1091
 
1092
  if not single_image and args.random_flip and random.random() < 0.5:
1093
  # flip
1094
  image = train_flip(image)
1095
  if args.center_crop or single_image:
1096
+ pass
1097
+ #y1 = max(0, int(round((image.height - args.resolution) / 2.0)))
1098
+ #x1 = max(0, int(round((image.width - args.resolution) / 2.0)))
1099
+ #image = train_crop(image)
1100
  else:
1101
+ pass
1102
+ #y1, x1, h, w = train_crop.get_params(image, (args.resolution, args.resolution))
1103
+ #image = crop(image, y1, x1, h, w)
1104
  crop_top_left = (y1, x1)
1105
  self.crop_top_lefts.append(crop_top_left)
1106
  image = train_transforms(image)
 
1123
  if not image.mode == "RGB":
1124
  image = image.convert("RGB")
1125
  self.original_sizes_class_imgs.append((image.height, image.width))
1126
+ # image = train_resize(image)
1127
  if args.random_flip and random.random() < 0.5:
1128
  # flip
1129
  image = train_flip(image)
1130
  if args.center_crop:
1131
+ #y1 = max(0, int(round((image.height - args.resolution) / 2.0)))
1132
+ #x1 = max(0, int(round((image.width - args.resolution) / 2.0)))
1133
+ #image = train_crop(image)
1134
  else:
1135
+ #y1, x1, h, w = train_crop.get_params(image, (args.resolution, args.resolution))
1136
+ #image = crop(image, y1, x1, h, w)
1137
  crop_top_left = (y1, x1)
1138
  self.crop_top_lefts_class_imgs.append(crop_top_left)
1139
  image = train_transforms(image)
 
1149
 
1150
  self.image_transforms = transforms.Compose(
1151
  [
1152
+ # transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
1153
+ # transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
1154
  transforms.ToTensor(),
1155
  transforms.Normalize([0.5], [0.5]),
1156
  ]