dj86 commited on
Commit
c59556c
1 Parent(s): d411c25

Update vlog4chat.py

Browse files
Files changed (1) hide show
  1. vlog4chat.py +2 -15
vlog4chat.py CHANGED
@@ -29,20 +29,6 @@ from typing import Any, Dict, List, Mapping, Optional
29
  from langchain.memory import ConversationBufferMemory
30
  from langchain import LLMChain, PromptTemplate
31
 
32
- import torch
33
-
34
- def map_to_cpu(obj):
35
- if isinstance(obj, torch.Tensor):
36
- return obj.to(torch.device('cpu'))
37
- elif isinstance(obj, dict):
38
- return {k: map_to_cpu(v) for k, v in obj.items()}
39
- elif isinstance(obj, list):
40
- return [map_to_cpu(i) for i in obj]
41
- elif isinstance(obj, tuple):
42
- return tuple(map_to_cpu(i) for i in obj)
43
- else:
44
- return obj
45
-
46
  warnings.filterwarnings("ignore", category=UserWarning)
47
  B_INST, E_INST = "[INST]", "[/INST]"
48
  B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
@@ -170,7 +156,8 @@ class Vlogger4chat :
170
  #text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
171
  #chunks = text_splitter.split_documents(raw_documents)
172
  #self.vector_storage = FAISS.from_documents(chunks, self.my_embedding)
173
- with open('./BV11H4y1F7uH.pkl', 'rb') as f:
 
174
  vector_storage =pickle.load(f)
175
  self.vector_storage = map_to_cpu(vector_storage)
176
  self.chain = ConversationalRetrievalChain.from_llm(self.llm, self.vector_storage.as_retriever(), return_source_documents=True)
 
29
  from langchain.memory import ConversationBufferMemory
30
  from langchain import LLMChain, PromptTemplate
31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  warnings.filterwarnings("ignore", category=UserWarning)
33
  B_INST, E_INST = "[INST]", "[/INST]"
34
  B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
 
156
  #text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
157
  #chunks = text_splitter.split_documents(raw_documents)
158
  #self.vector_storage = FAISS.from_documents(chunks, self.my_embedding)
159
+ pkl_path = os.path.join(self.data_dir, f"{video_id}.pkl")
160
+ with open(pkl_path, 'rb') as f:
161
  vector_storage =pickle.load(f)
162
  self.vector_storage = map_to_cpu(vector_storage)
163
  self.chain = ConversationalRetrievalChain.from_llm(self.llm, self.vector_storage.as_retriever(), return_source_documents=True)