dj86's picture
Update app.py
706c3d9 verified
raw
history blame
12.5 kB
import os
import json
import gradio as gr
import requests
import csv
import argparse
import shutil
from vlog4chat import Vlogger4chat
from vlog4debate import Debate
from utils import download_video
#prompt_templates = {"Default ChatGPT": ""}
parser = argparse.ArgumentParser()
parser.add_argument('--video_path', default='./BV11H4y1F7uH-P50.mp4')
parser.add_argument('--alpha', default=10, type=int, help='Determine the maximum segment number for KTS algorithm, the larger the value, the fewer segments.')
parser.add_argument('--beta', default=1, type=int, help='The smallest time gap between successive clips, in seconds.')
parser.add_argument('--data_dir', default='./', type=str, help='Directory for saving videos and logs.')
parser.add_argument('--tmp_dir', default='./', type=str, help='Directory for saving intermediate files.')
# * Models settings *
parser.add_argument('--openai_api_key', default='xxx', type=str, help='OpenAI API key')
parser.add_argument('--image_caption', action='store_true', dest='image_caption', default=True, help='Set this flag to True if you want to use BLIP Image Caption')
parser.add_argument('--dense_caption', action='store_true', dest='dense_caption', default=True, help='Set this flag to True if you want to use Dense Caption')
parser.add_argument('--feature_extractor', default='./clip-vit-base-patch32', help='Select the feature extractor model for video segmentation')
parser.add_argument('--feature_extractor_device', choices=['cuda', 'cpu'], default='cuda', help='Select the device: cuda or cpu')
parser.add_argument('--image_captioner', choices=['blip2-opt', 'blip2-flan-t5', 'blip'], dest='captioner_base_model', default='blip2-opt', help='blip2 requires 15G GPU memory, blip requires 6G GPU memory')
parser.add_argument('--image_captioner_device', choices=['cuda', 'cpu'], default='cuda', help='Select the device: cuda or cpu, gpu memory larger than 14G is recommended')
parser.add_argument('--dense_captioner_device', choices=['cuda', 'cpu'], default='cuda', help='Select the device: cuda or cpu, < 6G GPU is not recommended>')
parser.add_argument('--audio_translator', default='large')
parser.add_argument('--audio_translator_device', choices=['cuda', 'cpu'], default='cuda')
parser.add_argument('--gpt_version', choices=['gpt-3.5-turbo'], default='gpt-3.5-turbo')
args = parser.parse_args()
vlogger = Vlogger4chat(args)
def get_empty_state():
return {"total_tokens": 0, "messages": []}
def submit_message(prompt, state):
history = state['messages']
if not prompt:
return gr.update(value=''), [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)], state
prompt_msg = { "role": "user", "content": prompt }
try:
history.append(prompt_msg)
answer = vlogger.chat2video(prompt)
history.append({"role": "system", "content": answer})
except Exception as e:
history.append(prompt_msg)
history.append({
"role": "system",
"content": f"Error: {e}"
})
chat_messages = [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)]
return '', chat_messages, state
def submit_message_debate(prompt, state):
history = state['messages']
if not prompt:
return gr.update(value=''), [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)], state
prompt_msg = { "role": "user", "content": prompt }
try:
history.append(prompt_msg)
debate_topic = ""
while debate_topic == "":
debate_topic = prompt
config = json.load(open("./config4all.json", "r"))
config['debate_topic'] = debate_topic
debate = Debate(num_players=3, config=config, temperature=0, sleep_time=0)
answer = debate.run()
#chat_messages = [(res["debate_topic"]), (res["base_answer"]), (res["debate_answer"]), (res["Reason"])]
history.append({"role": "system", "content": answer})
except Exception as e:
history.append(prompt_msg)
history.append({
"role": "system",
"content": f"Error: {e}"
})
chat_messages = [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)]
return '', chat_messages, state
def clear_conversation():
vlogger.clean_history()
return gr.update(value=None, visible=True), gr.update(value=None, interactive=True), None, gr.update(value=None, visible=True), get_empty_state()
# download video from any online URL
def subvid_fn(vid):
print(vid)
save_path = download_video(vid)
return gr.update(value=save_path)
# 本地上传,适用于Running on local URL: http://127.0.0.1:6006
def uploaded_video(video_file):
UPLOAD_FOLDER = "./"
if not os.path.exists(UPLOAD_FOLDER):
os.mkdir(UPLOAD_FOLDER)
shutil.copy(video_file, UPLOAD_FOLDER)
gr.Info("File Uploaded!!!")
save_path = os.path.join(UPLOAD_FOLDER, os.path.basename(video_file))
return gr.update(value=save_path)
def vlog_fn(vid_path):
print(vid_path)
if vid_path is None:
log_text = "====== Please choose existing video from the library or provide video URL 🤔====="
else:
log_list = vlogger.video2log(vid_path)
log_text = "\n".join(log_list)
return gr.update(value=log_text, visible=True)
# 初始化一个空的答案记录字典
answers = {}
# 定义处理用户选择的函数
def submit_answers_pretest(question1, question2, question3, question4, question5, question6, question7, question8, question9, question10):
answers['Question 1'] = question1
answers['Question 2'] = question2
answers['Question 3'] = question3
answers['Question 4'] = question4
answers['Question 5'] = question5
answers['Question 6'] = question6
answers['Question 7'] = question7
answers['Question 8'] = question8
answers['Question 9'] = question9
answers['Question 10'] = question10
# 可以将结果保存到文件
with open('answers4pretest.txt', 'a') as f:
f.write(f"Question 1: {question1}\n")
f.write(f"Question 2: {question2}\n")
f.write(f"Question 3: {question3}\n")
f.write(f"Question 4: {question4}\n")
f.write(f"Question 5: {question5}\n")
f.write(f"Question 6: {question6}\n")
f.write(f"Question 7: {question7}\n")
f.write(f"Question 8: {question8}\n")
f.write(f"Question 9: {question9}\n")
f.write(f"Question 10: {question10}\n\n")
# 返回一个确认消息
return "谢谢你提交答案!"
def submit_answers_posttest(question1, question2, question3, question4, question5, question6, question7, question8, question9, question10):
answers['Question 1'] = question1
answers['Question 2'] = question2
answers['Question 3'] = question3
answers['Question 4'] = question4
answers['Question 5'] = question5
answers['Question 6'] = question6
answers['Question 7'] = question7
answers['Question 8'] = question8
answers['Question 9'] = question9
answers['Question 10'] = question10
# 可以将结果保存到文件
with open('answers4posttest.txt', 'a') as f:
f.write(f"Question 1: {question1}\n")
f.write(f"Question 2: {question2}\n")
f.write(f"Question 3: {question3}\n")
f.write(f"Question 4: {question4}\n")
f.write(f"Question 5: {question5}\n")
f.write(f"Question 6: {question6}\n")
f.write(f"Question 7: {question7}\n")
f.write(f"Question 8: {question8}\n")
f.write(f"Question 9: {question9}\n")
f.write(f"Question 10: {question10}\n\n")
# 返回一个确认消息
return "谢谢你提交答案!"
css = """
#col-container {max-width: 80%; margin-left: auto; margin-right: auto;}
#video_inp {min-height: 100px}
#chatbox {min-height: 100px;}
#header {text-align: center;}
#hint {font-size: 2.0em; padding: 0.5em; margin: 0;}
.message { font-size: 1.2em; }
"""
with gr.Blocks(css=css) as demo:
with gr.Tabs():
# 第一个标签页
with gr.TabItem("第一步(观看前测试)"):
gr.Markdown("""## 在观看视频前,我们先进行一个简单的测试: 由和视频内容相关的六道题目组成,
请访问:[正则化](https://www.wjx.cn/vm/PpJMhuc.aspx#) 进行答题。""",
elem_id="header")
# 第二个标签页
with gr.TabItem("第二步(VLog使用)"):
state = gr.State(get_empty_state())
with gr.Column(elem_id="col-container"):
gr.Markdown("""## 🎞️ 视频Chat:
Powered by CLIP, BLIP2, GRIT, RAM++, PaddleOCR, Whisper, Custom LLMs and LangChain""",
elem_id="header")
with gr.Row():
with gr.Column():
video_inp = gr.Video(label="video_input")
gr.Markdown("Step 1: 请在下方选取视频(Select videos below)", elem_id="hint")
examples = gr.Examples(
examples=[
["./BV11H4y1F7uH-P58.mp4"],
],
inputs=[video_inp],
)
#with gr.Row():
# video_id = gr.Textbox(value="", placeholder="Download video url", show_label=False)
# vidsub_btn = gr.Button("上传网站视频")
chatbot = gr.Chatbot(elem_id="chatbox")
input_message = gr.Textbox(show_label=False, placeholder="输入提问内容并按回车(Input your question)", visible=True)
btn_submit = gr.Button("提问视频内容(Submit)")
#gr.Markdown("如果对上面的回答不满意,请在下方输入需要辩论的问题, *e.g.* *方差越小越好? 正则化必不可缺? 梯度一定存在?*", elem_id="hint")
#chatbot_debate = gr.Chatbot(elem_id="chatbox")
#input_message_debate = gr.Textbox(show_label=False, placeholder="输入辩论主题并按回车(Input your debate topic)", visible=True)
#btn_submit_debate = gr.Button("发起问题辩论(Submit)")
btn_clear_conversation = gr.Button("🔃 开始新的对话(Start new conversation)")
with gr.Column():
vlog_btn = gr.Button("Step 2: 查看视频日志(Pleas wait around 20 seconds)")
vlog_outp = gr.Textbox(label="Document output", lines=70)
total_tokens_str = gr.Markdown(elem_id="total_tokens_str")
gr.HTML('''<br><br><br><center>You can duplicate this Space to skip the queue:<a href="https://huggingface.co./spaces/anzorq/chatgpt-demo?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a><br></center>''')
btn_submit.click(submit_message, [input_message, state], [input_message, chatbot])
input_message.submit(submit_message, [input_message, state], [input_message, chatbot])
#btn_submit_debate.click(submit_message_debate, [input_message_debate, state], [input_message_debate, chatbot])
#input_message_debate.submit(submit_message_debate, [input_message_debate, state], [input_message_debate, chatbot])
btn_clear_conversation.click(clear_conversation, [], [input_message, video_inp, chatbot, vlog_outp, state])
vlog_btn.click(vlog_fn, [video_inp], [vlog_outp])
#vidsub_btn.click(subvid_fn, [video_id], [video_inp])
# 第三个标签页
with gr.TabItem("第三步(观后测试)"):
gr.Markdown("""## 在观看视频后,我们再进行一个简单的测试: 也是由和视频内容相关的十道题目组成,
请访问:[正则化](https://www.wjx.cn/vm/moF3yHH.aspx#) 进行答题。""",
elem_id="header")
demo.load(queue=False)
demo.queue()
if __name__ == "__main__":
demo.launch(share=True)