Spaces:
Sleeping
Sleeping
File size: 7,714 Bytes
62a001a 8d42871 62a001a 075c157 62a001a 3014fbb cc6b261 7b610c1 62a001a d6743ee 62a001a 73be87d 62a001a 5f1ad13 3014fbb 9b2ec19 62a001a 544aa00 62a001a 8eabbf8 62a001a c87fef7 62a001a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import os
import sys
import time
import pickle
import numpy as np
from utils import logger_creator, format_time
import together
import warnings
from together import Together
from langchain.prompts import PromptTemplate
from langchain.llms.base import LLM
from langchain.chains import ConversationalRetrievalChain
from langchain_core.output_parsers import StrOutputParser
from langchain.text_splitter import RecursiveCharacterTextSplitter
#from langchain.llms import HuggingFacePipeline
from langchain_community.llms import HuggingFacePipeline
#from langchain.embeddings import HuggingFaceEmbeddings
#from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.document_loaders import TextLoader
#from langchain.document_loaders import UnstructuredFileLoader
from langchain_community.document_loaders import UnstructuredFileLoader
from langchain_community.vectorstores import FAISS
from langchain.utils import get_from_dict_or_env
from langchain_core.runnables import RunnablePassthrough, RunnableParallel
from pydantic.v1 import Extra, Field, root_validator
from typing import Any, Dict, List, Mapping, Optional
from langchain.memory import ConversationBufferMemory
from langchain import LLMChain, PromptTemplate
warnings.filterwarnings("ignore", category=UserWarning)
B_INST, E_INST = "[INST]", "[/INST]"
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
DEFAULT_SYSTEM_PROMPT = ""
instruction = """You are an AI assistant designed for answering questions about a video.
You are given a document and a question, the document records what people see and hear from this video.
Try to connet these information and provide a conversational answer.
Question: {question}
=========
{context}
=========
"""
system_prompt = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.
You can assume the discussion is about the video content.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:"""
def get_prompt(instruction, new_system_prompt=DEFAULT_SYSTEM_PROMPT ):
SYSTEM_PROMPT = B_SYS + new_system_prompt + E_SYS
prompt_template = B_INST + SYSTEM_PROMPT + instruction + E_INST
return prompt_template
template = get_prompt(instruction, system_prompt)
prompt = PromptTemplate(
input_variables=["chat_history", "user_input"], template=template
)
class TogetherLLM(LLM):
"""Together large language models."""
model: str = "togethercomputer/llama-2-70b-chat"
"""model endpoint to use"""
together_api_key: str = os.environ["TOGETHER_API_KEY"]
"""Together API key"""
temperature: float = 0.7
"""What sampling temperature to use."""
max_tokens: int = 512
"""The maximum number of tokens to generate in the completion."""
class Config:
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the API key is set."""
api_key = get_from_dict_or_env(
values, "together_api_key", "TOGETHER_API_KEY"
)
values["together_api_key"] = api_key
return values
@property
def _llm_type(self) -> str:
"""Return type of LLM."""
return "together"
def _call(
self,
prompt: str,
**kwargs: Any,
) -> str:
"""Call to Together endpoint."""
together.api_key = self.together_api_key
output = together.Complete.create(prompt,
model=self.model,
max_tokens=self.max_tokens,
temperature=self.temperature,
top_p=0.7,
top_k=50,
repetition_penalty=1,
stop=["</s>"],
)
text = output['choices'][0]['text']
return text
class Vlogger4chat :
def __init__(self, args):
self.args = args
self.alpha = args.alpha
self.beta = args.beta
self.data_dir = args.data_dir,
self.tmp_dir = args.tmp_dir
self.models_flag = False
self.init_llm()
self.history = []
self.my_embedding = HuggingFaceEmbeddings(model_name='BAAI/bge-m3', model_kwargs={'device': 'cpu'} ,encode_kwargs={'normalize_embeddings': True})
def init_llm(self):
print('\033[1;33m' + "Initializing LLM Reasoner...".center(50, '-') + '\033[0m')
self.llm = TogetherLLM(
model= os.getenv("YOUR_MODEL_NAME"),
temperature=0.1,
max_tokens=768
)
print('\033[1;32m' + "LLM initialization finished!".center(50, '-') + '\033[0m')
def exist_videolog(self, video_id):
if isinstance(self.data_dir, tuple):
self.data_dir = self.data_dir[0] # 或者根据实际情况选择合适的索引
if isinstance(video_id, tuple):
video_id = video_id[0] # 或者根据实际情况选择合适的索引
log_path = os.path.join(self.data_dir, f"{video_id}.log")
#print(f"log_path: {log_path}\n")
if os.path.exists(log_path):
#print("existing log path!!!\n")
loader = UnstructuredFileLoader(log_path)
raw_documents = loader.load()
if not raw_documents:
print("The log file is empty or could not be loaded.")
return False # 如果 raw_documents 为空或所有内容都为空白,直接返回
# Split text
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
chunks = text_splitter.split_documents(raw_documents)
self.vector_storage = FAISS.from_documents(chunks, self.my_embedding)
self.chain = ConversationalRetrievalChain.from_llm(self.llm, self.vector_storage.as_retriever(), return_source_documents=True)
return True
return False
def create_videolog(self, video_id):
video_id = os.path.basename(self.video_path).split('.')[0]
log_path = os.path.join(self.data_dir, video_id + '.log')
loader = UnstructuredFileLoader(log_path)
raw_documents = loader.load()
# Split text
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
chunks = text_splitter.split_documents(raw_documents)
self.vector_storage = FAISS.from_documents(chunks, self.my_embedding)
self.chain = ConversationalRetrievalChain.from_llm(self.llm, self.vector_storage.as_retriever(), return_source_documents=True)
def video2log(self, video_path):
self.video_path = video_path
video_id = os.path.basename(video_path).split('.')[0]
if self.exist_videolog(video_id):
return self.printlog(video_id)
return self.printlog(video_id)
def printlog(self, video_id):
log_list = []
log_path = os.path.join(self.data_dir, video_id + '.log')
with open(log_path, 'r', encoding='utf-8') as f:
for line in f:
log_list.append(line.strip())
return log_list
def chat2video(self, question):
print(f"Question: {question}")
response = self.chain({"question": "请用中文回答:"+question, "chat_history": self.history})['answer']
self.history.append((question, response))
return response
def clean_history(self):
self.history = []
return
|