Spaces:
Sleeping
Sleeping
File size: 17,316 Bytes
12514b0 6f24d99 12514b0 6570a5e 6f24d99 12514b0 0e2c65f 12514b0 bd801fd 12514b0 bd801fd 12514b0 6f24d99 12514b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
import os
import json
import gradio as gr
import requests
import csv
import argparse
import shutil
from vlog4chat import Vlogger4chat
from vlog4debate import Debate
from utils import download_video
#prompt_templates = {"Default ChatGPT": ""}
parser = argparse.ArgumentParser()
parser.add_argument('--video_path', default='examples/training.mp4')
parser.add_argument('--alpha', default=10, type=int, help='Determine the maximum segment number for KTS algorithm, the larger the value, the fewer segments.')
parser.add_argument('--beta', default=1, type=int, help='The smallest time gap between successive clips, in seconds.')
parser.add_argument('--data_dir', default='./examples', type=str, help='Directory for saving videos and logs.')
parser.add_argument('--tmp_dir', default='./tmp', type=str, help='Directory for saving intermediate files.')
# * Models settings *
parser.add_argument('--openai_api_key', default='xxx', type=str, help='OpenAI API key')
parser.add_argument('--image_caption', action='store_true', dest='image_caption', default=True, help='Set this flag to True if you want to use BLIP Image Caption')
parser.add_argument('--dense_caption', action='store_true', dest='dense_caption', default=True, help='Set this flag to True if you want to use Dense Caption')
parser.add_argument('--feature_extractor', default='./clip-vit-base-patch32', help='Select the feature extractor model for video segmentation')
parser.add_argument('--feature_extractor_device', choices=['cuda', 'cpu'], default='cuda', help='Select the device: cuda or cpu')
parser.add_argument('--image_captioner', choices=['blip2-opt', 'blip2-flan-t5', 'blip'], dest='captioner_base_model', default='blip2-opt', help='blip2 requires 15G GPU memory, blip requires 6G GPU memory')
parser.add_argument('--image_captioner_device', choices=['cuda', 'cpu'], default='cuda', help='Select the device: cuda or cpu, gpu memory larger than 14G is recommended')
parser.add_argument('--dense_captioner_device', choices=['cuda', 'cpu'], default='cuda', help='Select the device: cuda or cpu, < 6G GPU is not recommended>')
parser.add_argument('--audio_translator', default='large')
parser.add_argument('--audio_translator_device', choices=['cuda', 'cpu'], default='cuda')
parser.add_argument('--gpt_version', choices=['gpt-3.5-turbo'], default='gpt-3.5-turbo')
args = parser.parse_args()
vlogger = Vlogger4chat(args)
def get_empty_state():
return {"total_tokens": 0, "messages": []}
def submit_message(prompt, state):
history = state['messages']
if not prompt:
return gr.update(value=''), [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)], state
prompt_msg = { "role": "user", "content": prompt }
try:
history.append(prompt_msg)
answer = vlogger.chat2video(prompt)
history.append({"role": "system", "content": answer})
except Exception as e:
history.append(prompt_msg)
history.append({
"role": "system",
"content": f"Error: {e}"
})
chat_messages = [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)]
return '', chat_messages, state
def submit_message_debate(prompt, state):
history = state['messages']
if not prompt:
return gr.update(value=''), [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)], state
prompt_msg = { "role": "user", "content": prompt }
try:
history.append(prompt_msg)
debate_topic = ""
while debate_topic == "":
debate_topic = prompt
config = json.load(open("./config4all.json", "r"))
config['debate_topic'] = debate_topic
debate = Debate(num_players=3, config=config, temperature=0, sleep_time=0)
answer = debate.run()
#chat_messages = [(res["debate_topic"]), (res["base_answer"]), (res["debate_answer"]), (res["Reason"])]
history.append({"role": "system", "content": answer})
except Exception as e:
history.append(prompt_msg)
history.append({
"role": "system",
"content": f"Error: {e}"
})
chat_messages = [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)]
return '', chat_messages, state
def clear_conversation():
vlogger.clean_history()
return gr.update(value=None, visible=True), gr.update(value=None, visible=True), gr.update(value=None, interactive=True), None, gr.update(value=None, visible=True), get_empty_state()
# download video from any online URL
def subvid_fn(vid):
print(vid)
save_path = download_video(vid)
return gr.update(value=save_path)
# 本地上传,适用于Running on local URL: http://127.0.0.1:6006
def uploaded_video(video_file):
UPLOAD_FOLDER = "./examples"
if not os.path.exists(UPLOAD_FOLDER):
os.mkdir(UPLOAD_FOLDER)
shutil.copy(video_file, UPLOAD_FOLDER)
gr.Info("File Uploaded!!!")
save_path = os.path.join(UPLOAD_FOLDER, os.path.basename(video_file))
return gr.update(value=save_path)
def vlog_fn(vid_path):
print(vid_path)
if vid_path is None:
log_text = "====== Please choose existing video from the library or provide video URL 🤔====="
else:
log_list = vlogger.video2log(vid_path)
log_text = "\n".join(log_list)
return gr.update(value=log_text, visible=True)
# 初始化一个空的答案记录字典
answers = {}
# 定义处理用户选择的函数
def submit_answers_pretest(question1, question2, question3, question4, question5, question6, question7, question8, question9, question10):
answers['Question 1'] = question1
answers['Question 2'] = question2
answers['Question 3'] = question3
answers['Question 4'] = question4
answers['Question 5'] = question5
answers['Question 6'] = question6
answers['Question 7'] = question7
answers['Question 8'] = question8
answers['Question 9'] = question9
answers['Question 10'] = question10
# 可以将结果保存到文件
with open('answers4pretest.txt', 'a') as f:
f.write(f"Question 1: {question1}\n")
f.write(f"Question 2: {question2}\n")
f.write(f"Question 3: {question3}\n")
f.write(f"Question 4: {question4}\n")
f.write(f"Question 5: {question5}\n")
f.write(f"Question 6: {question6}\n")
f.write(f"Question 7: {question7}\n")
f.write(f"Question 8: {question8}\n")
f.write(f"Question 9: {question9}\n")
f.write(f"Question 10: {question10}\n\n")
# 返回一个确认消息
return "谢谢你提交答案!"
def submit_answers_posttest(question1, question2, question3, question4, question5, question6, question7, question8, question9, question10):
answers['Question 1'] = question1
answers['Question 2'] = question2
answers['Question 3'] = question3
answers['Question 4'] = question4
answers['Question 5'] = question5
answers['Question 6'] = question6
answers['Question 7'] = question7
answers['Question 8'] = question8
answers['Question 9'] = question9
answers['Question 10'] = question10
# 可以将结果保存到文件
with open('answers4posttest.txt', 'a') as f:
f.write(f"Question 1: {question1}\n")
f.write(f"Question 2: {question2}\n")
f.write(f"Question 3: {question3}\n")
f.write(f"Question 4: {question4}\n")
f.write(f"Question 5: {question5}\n")
f.write(f"Question 6: {question6}\n")
f.write(f"Question 7: {question7}\n")
f.write(f"Question 8: {question8}\n")
f.write(f"Question 9: {question9}\n")
f.write(f"Question 10: {question10}\n\n")
# 返回一个确认消息
return "谢谢你提交答案!"
css = """
#col-container {max-width: 80%; margin-left: auto; margin-right: auto;}
#video_inp {min-height: 100px}
#chatbox {min-height: 100px;}
#header {text-align: center;}
#hint {font-size: 1.0em; padding: 0.5em; margin: 0;}
.message { font-size: 1.2em; }
"""
with gr.Blocks(css=css) as demo:
with gr.Tabs():
# 第一个标签页
with gr.TabItem("第一步(预先测试)"):
gr.Markdown("## Survey: Please answer the following questions")
# 问题1
question1 = gr.Radio(
choices=["1", "2", "3", "4", "5"],
label="1. What is your favorite color?",
)
# 问题2
question2 = gr.Radio(
choices=["1", "2", "3", "4", "5"],
label="2. What is your preferred mode of transport?",
)
# 问题3
question3 = gr.Radio(
choices=["1", "2", "3", "4", "5"],
label="3. Which type of cuisine do you prefer?",
)
# 问题4
question4 = gr.Radio(
choices=["1", "2", "3", "4", "5"],
label="4. What is your favorite color?",
)
# 问题5
question5 = gr.Radio(
choices=["1", "2", "3", "4", "5"],
label="5. What is your preferred mode of transport?",
)
# 问题6
question6 = gr.Radio(
choices=["1", "2", "3", "4", "5"],
label="6. Which type of cuisine do you prefer?",
)
# 问题7
question7 = gr.Radio(
choices=["1", "2", "3", "4", "5"],
label="7. Which type of cuisine do you prefer?",
)
# 问题8
question8 = gr.Radio(
choices=["1", "2", "3", "4", "5"],
label="8. What is your favorite color?",
)
# 问题9
question9 = gr.Radio(
choices=["1", "2", "3", "4", "5"],
label="9. What is your preferred mode of transport?",
)
# 问题10
question10 = gr.Radio(
choices=["1", "2", "3", "4", "5"],
label="10. Which type of cuisine do you prefer?",
)
# 提交按钮
submit_button = gr.Button("Submit Answers")
# 显示结果
output = gr.Textbox(label="Message")
# 点击提交按钮时,调用submit_answers函数
submit_button.click(
submit_answers_pretest,
inputs=[question1, question2, question3, question4, question5, question6, question7, question8, question9, question10],
outputs=output
)
# 第二个标签页
with gr.TabItem("第二步(VLog使用)"):
state = gr.State(get_empty_state())
with gr.Column(elem_id="col-container"):
gr.Markdown("""## 🎞️ 视频Chat:
Powered by CLIP, BLIP2, GRIT, RAM++, PaddleOCR, Whisper, Custom LLMs and LangChain""",
elem_id="header")
with gr.Row():
with gr.Column():
video_inp = gr.Video(label="video_input")
# 设置点击事件,点击按钮后保存上传的视频
#save_btn = gr.Button("Upload Video")
# 本地上传,适用于Running on local URL: http://127.0.0.1:6006
#save_btn.click(uploaded_video, [video_inp], [video_inp])
gr.Markdown("请在下方输入需要播放的视频完整网址, *e.g.* *B站地址*", elem_id="hint")
with gr.Row():
video_id = gr.Textbox(value="", placeholder="Download video url", show_label=False)
vidsub_btn = gr.Button("上传网站视频")
chatbot = gr.Chatbot(elem_id="chatbox")
input_message = gr.Textbox(show_label=False, placeholder="输入文字并按回车", visible=True)
btn_submit = gr.Button("提问视频内容")
gr.Markdown("如果对上面的回答不满意,请在下方输入需要辩论的问题, *e.g.* *方差越小越好?*", elem_id="hint")
#chatbot_debate = gr.Chatbot(elem_id="chatbox")
input_message_debate = gr.Textbox(show_label=False, placeholder="输入文字并按回车", visible=True)
btn_submit_debate = gr.Button("发起问题辩论")
btn_clear_conversation = gr.Button("🔃 开始新的对话")
with gr.Column():
vlog_btn = gr.Button("点击此处,生成视频日志")
vlog_outp = gr.Textbox(label="Document output", lines=60)
total_tokens_str = gr.Markdown(elem_id="total_tokens_str")
gr.Markdown("请点击下方视频(任意选择一个视频进行播放)", elem_id="hint")
examples = gr.Examples(
examples=[
["examples/BV11H4y1F7uH.mp4"],
["examples/BV1J14y1d7X4.mp4"],
],
inputs=[video_inp],
)
gr.HTML('''<br><br><br><center>You can duplicate this Space to skip the queue:<a href="https://huggingface.co./spaces/anzorq/chatgpt-demo?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a><br></center>''')
btn_submit.click(submit_message, [input_message, state], [input_message, chatbot])
input_message.submit(submit_message, [input_message, state], [input_message, chatbot])
btn_submit_debate.click(submit_message_debate, [input_message_debate, state], [input_message_debate, chatbot])
input_message_debate.submit(submit_message_debate, [input_message_debate, state], [input_message_debate, chatbot])
btn_clear_conversation.click(clear_conversation, [], [input_message, input_message_debate, video_inp, chatbot, vlog_outp, state])
vlog_btn.click(vlog_fn, [video_inp], [vlog_outp])
vidsub_btn.click(subvid_fn, [video_id], [video_inp])
# 第三个标签页
with gr.TabItem("第三步(再次测试)"):
gr.Markdown("## Survey: Please answer the following questions")
# 问题1
question1 = gr.Radio(
choices=["1", "2", "3", "4", "5"],
label="1. What is your favorite color?",
)
# 问题2
question2 = gr.Radio(
choices=["1", "2", "3", "4", "5"],
label="2. What is your preferred mode of transport?",
)
# 问题3
question3 = gr.Radio(
choices=["1", "2", "3", "4", "5"],
label="3. Which type of cuisine do you prefer?",
)
# 问题4
question4 = gr.Radio(
choices=["1", "2", "3", "4", "5"],
label="4. What is your favorite color?",
)
# 问题5
question5 = gr.Radio(
choices=["1", "2", "3", "4", "5"],
label="5. What is your preferred mode of transport?",
)
# 问题6
question6 = gr.Radio(
choices=["1", "2", "3", "4", "5"],
label="6. Which type of cuisine do you prefer?",
)
# 问题7
question7 = gr.Radio(
choices=["1", "2", "3", "4", "5"],
label="7. Which type of cuisine do you prefer?",
)
# 问题8
question8 = gr.Radio(
choices=["1", "2", "3", "4", "5"],
label="8. What is your favorite color?",
)
# 问题9
question9 = gr.Radio(
choices=["1", "2", "3", "4", "5"],
label="9. What is your preferred mode of transport?",
)
# 问题10
question10 = gr.Radio(
choices=["1", "2", "3", "4", "5"],
label="10. Which type of cuisine do you prefer?",
)
# 提交按钮
submit_button = gr.Button("Submit Answers")
# 显示结果
output = gr.Textbox(label="Message")
# 点击提交按钮时,调用submit_answers函数
submit_button.click(
submit_answers_posttest,
inputs=[question1, question2, question3, question4, question5, question6, question7, question8, question9, question10],
outputs=output
)
demo.load(queue=False)
demo.queue(concurrency_count=10)
if __name__ == "__main__":
demo.launch(share=True) |