Spaces:
Sleeping
Sleeping
File size: 1,413 Bytes
944c93a bd2d69d d78053e bd2d69d 4388025 944c93a 4388025 1791df2 4388025 d78053e 4388025 989941c d78053e 1791df2 4388025 1791df2 4388025 d78053e 4388025 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
from dataclasses import dataclass
from PIL import Image
import pandas as pd
from geoguessr_bot.guessr import AbstractGuessr
from geoguessr_bot.interfaces import Coordinate
from geoguessr_bot.retriever import AbstractImageEmbedder
from geoguessr_bot.retriever import Retriever
@dataclass
class NearestNeighborEmbedderGuessr(AbstractGuessr):
"""Guesses a coordinate using an Embedder and a retriever followed by NN.
"""
embedder: AbstractImageEmbedder
retriever: Retriever
metadata_path: str
def __post_init__(self):
"""Load metadata
"""
metadata = pd.read_csv(self.metadata_path)
self.image_to_coordinate = {
image.split("/")[-1]: Coordinate(latitude=latitude, longitude=longitude)
for image, latitude, longitude in zip(metadata["path"], metadata["latitude"], metadata["longitude"])
}
def guess(self, image: Image) -> Coordinate:
"""Guess a coordinate from an image
"""
# Embed image
image = Image.fromarray(image)
image_embedding = self.embedder.embed(image)[None, :]
# Retrieve nearest neighbor
nearest_neighbors = self.retriever.retrieve(image_embedding)
nearest_neighbor = nearest_neighbors[0][0][0]
# Guess coordinate
guess_coordinate = self.image_to_coordinate[nearest_neighbor]
return guess_coordinate
|