Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
patrickvonplaten
commited on
Commit
·
876d6e2
1
Parent(s):
9a6c912
uP
Browse files- README.md +2 -3
- __pycache__/app.cpython-310.pyc +0 -0
- __pycache__/convert.cpython-310.pyc +0 -0
- app.py +2 -7
- convert.py +9 -35
README.md
CHANGED
@@ -1,14 +1,13 @@
|
|
1 |
---
|
2 |
-
title: SD To Diffusers
|
3 |
emoji: 🎨➡️🧨
|
4 |
colorFrom: indigo
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.31.0
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
license: mit
|
11 |
-
duplicated_from: diffusers/sd-to-diffusers
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: SD-XL To Diffusers
|
3 |
emoji: 🎨➡️🧨
|
4 |
colorFrom: indigo
|
5 |
+
colorTo: purple
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.31.0
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
license: mit
|
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
__pycache__/app.cpython-310.pyc
ADDED
Binary file (1.31 kB). View file
|
|
__pycache__/convert.cpython-310.pyc
ADDED
Binary file (2.75 kB). View file
|
|
app.py
CHANGED
@@ -7,8 +7,7 @@ The steps are the following:
|
|
7 |
|
8 |
- Paste a read-access token from hf.co/settings/tokens. Read access is enough given that we will open a PR against the source repo.
|
9 |
- Input a model id from the Hub
|
10 |
-
- Input the filename from the root dir of the repo that you would like to convert, e.g. '
|
11 |
-
- Chose which Stable Diffusion version, image size, scheduler type the model has and whether you want the "ema", or "non-ema" weights.
|
12 |
- Click "Submit"
|
13 |
- That's it! You'll get feedback if it works or not, and if it worked, you'll get the URL of the opened PR 🔥
|
14 |
|
@@ -16,7 +15,7 @@ The steps are the following:
|
|
16 |
"""
|
17 |
|
18 |
demo = gr.Interface(
|
19 |
-
title="Convert any Stable Diffusion checkpoint to Diffusers and open a PR",
|
20 |
description=DESCRIPTION,
|
21 |
allow_flagging="never",
|
22 |
article="Check out the [Diffusers repo on GitHub](https://github.com/huggingface/diffusers)",
|
@@ -24,10 +23,6 @@ demo = gr.Interface(
|
|
24 |
gr.Text(max_lines=1, label="your_hf_token"),
|
25 |
gr.Text(max_lines=1, label="model_id"),
|
26 |
gr.Text(max_lines=1, label="filename"),
|
27 |
-
gr.Radio(label="Model type", choices=["v1", "v2", "ControlNet"]),
|
28 |
-
gr.Radio(label="Sample size (px)", choices=[512, 768]),
|
29 |
-
gr.Radio(label="Scheduler type", choices=["pndm", "heun", "euler", "dpm", "ddim"], value="dpm"),
|
30 |
-
gr.Radio(label="Extract EMA or non-EMA?", choices=["ema", "non-ema"], value="ema"),
|
31 |
],
|
32 |
outputs=[gr.Markdown(label="output")],
|
33 |
fn=convert,
|
|
|
7 |
|
8 |
- Paste a read-access token from hf.co/settings/tokens. Read access is enough given that we will open a PR against the source repo.
|
9 |
- Input a model id from the Hub
|
10 |
+
- Input the filename from the root dir of the repo that you would like to convert, e.g. 'xl-pruned.safetensors'
|
|
|
11 |
- Click "Submit"
|
12 |
- That's it! You'll get feedback if it works or not, and if it worked, you'll get the URL of the opened PR 🔥
|
13 |
|
|
|
15 |
"""
|
16 |
|
17 |
demo = gr.Interface(
|
18 |
+
title="Convert any Stable Diffusion XL checkpoint to Diffusers and open a PR",
|
19 |
description=DESCRIPTION,
|
20 |
allow_flagging="never",
|
21 |
article="Check out the [Diffusers repo on GitHub](https://github.com/huggingface/diffusers)",
|
|
|
23 |
gr.Text(max_lines=1, label="your_hf_token"),
|
24 |
gr.Text(max_lines=1, label="model_id"),
|
25 |
gr.Text(max_lines=1, label="filename"),
|
|
|
|
|
|
|
|
|
26 |
],
|
27 |
outputs=[gr.Markdown(label="output")],
|
28 |
fn=convert,
|
convert.py
CHANGED
@@ -3,6 +3,7 @@ import requests
|
|
3 |
import os
|
4 |
import shutil
|
5 |
from pathlib import Path
|
|
|
6 |
from tempfile import TemporaryDirectory
|
7 |
from typing import Optional
|
8 |
|
@@ -11,49 +12,22 @@ from io import BytesIO
|
|
11 |
|
12 |
from huggingface_hub import CommitInfo, Discussion, HfApi, hf_hub_download
|
13 |
from huggingface_hub.file_download import repo_folder_name
|
14 |
-
from diffusers
|
15 |
-
download_from_original_stable_diffusion_ckpt, download_controlnet_from_original_ckpt
|
16 |
-
)
|
17 |
from transformers import CONFIG_MAPPING
|
18 |
|
19 |
|
20 |
-
COMMIT_MESSAGE = " This PR adds fp32 and fp16 weights in
|
21 |
|
22 |
|
23 |
-
def convert_single(model_id: str, filename: str,
|
24 |
-
from_safetensors = filename.endswith(".safetensors")
|
25 |
-
|
26 |
progress(0, desc="Downloading model")
|
27 |
local_file = os.path.join(model_id, filename)
|
28 |
ckpt_file = local_file if os.path.isfile(local_file) else hf_hub_download(repo_id=model_id, filename=filename)
|
29 |
|
30 |
-
|
31 |
-
config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
|
32 |
-
elif model_type == "v2":
|
33 |
-
if sample_size == 512:
|
34 |
-
config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference.yaml"
|
35 |
-
else:
|
36 |
-
config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml"
|
37 |
-
elif model_type == "ControlNet":
|
38 |
-
config_url = (Path(model_id)/"resolve/main"/filename).with_suffix(".yaml")
|
39 |
-
config_url = "https://huggingface.co/" + str(config_url)
|
40 |
-
|
41 |
-
config_file = BytesIO(requests.get(config_url).content)
|
42 |
-
|
43 |
-
if model_type == "ControlNet":
|
44 |
-
progress(0.2, desc="Converting ControlNet Model")
|
45 |
-
pipeline = download_controlnet_from_original_ckpt(ckpt_file, config_file, image_size=sample_size, from_safetensors=from_safetensors, extract_ema=extract_ema)
|
46 |
-
to_args = {"dtype": torch.float16}
|
47 |
-
else:
|
48 |
-
progress(0.1, desc="Converting Model")
|
49 |
-
pipeline = download_from_original_stable_diffusion_ckpt(ckpt_file, config_file, image_size=sample_size, scheduler_type=scheduler_type, from_safetensors=from_safetensors, extract_ema=extract_ema)
|
50 |
-
to_args = {"torch_dtype": torch.float16}
|
51 |
-
|
52 |
-
pipeline.save_pretrained(folder)
|
53 |
-
pipeline.save_pretrained(folder, safe_serialization=True)
|
54 |
|
55 |
-
pipeline =
|
56 |
-
pipeline.
|
57 |
pipeline.save_pretrained(folder, safe_serialization=True, variant="fp16")
|
58 |
|
59 |
return folder
|
@@ -71,7 +45,7 @@ def previous_pr(api: "HfApi", model_id: str, pr_title: str) -> Optional["Discuss
|
|
71 |
return discussion
|
72 |
|
73 |
|
74 |
-
def convert(token: str, model_id: str, filename: str,
|
75 |
api = HfApi()
|
76 |
|
77 |
pr_title = "Adding `diffusers` weights of this model"
|
@@ -81,7 +55,7 @@ def convert(token: str, model_id: str, filename: str, model_type: str, sample_si
|
|
81 |
os.makedirs(folder)
|
82 |
new_pr = None
|
83 |
try:
|
84 |
-
folder = convert_single(model_id, filename,
|
85 |
progress(0.7, desc="Uploading to Hub")
|
86 |
new_pr = api.upload_folder(folder_path=folder, path_in_repo="./", repo_id=model_id, repo_type="model", token=token, commit_message=pr_title, commit_description=COMMIT_MESSAGE.format(model_id), create_pr=True)
|
87 |
pr_number = new_pr.split("%2F")[-1].split("/")[0]
|
|
|
3 |
import os
|
4 |
import shutil
|
5 |
from pathlib import Path
|
6 |
+
from typing import Any
|
7 |
from tempfile import TemporaryDirectory
|
8 |
from typing import Optional
|
9 |
|
|
|
12 |
|
13 |
from huggingface_hub import CommitInfo, Discussion, HfApi, hf_hub_download
|
14 |
from huggingface_hub.file_download import repo_folder_name
|
15 |
+
from diffusers import StableDiffusionXLPipeline
|
|
|
|
|
16 |
from transformers import CONFIG_MAPPING
|
17 |
|
18 |
|
19 |
+
COMMIT_MESSAGE = " This PR adds fp32 and fp16 weights in safetensors format to {}"
|
20 |
|
21 |
|
22 |
+
def convert_single(model_id: str, filename: str, folder: str, progress: Any):
|
|
|
|
|
23 |
progress(0, desc="Downloading model")
|
24 |
local_file = os.path.join(model_id, filename)
|
25 |
ckpt_file = local_file if os.path.isfile(local_file) else hf_hub_download(repo_id=model_id, filename=filename)
|
26 |
|
27 |
+
pipeline = StableDiffusionXLPipeline.from_single_file(ckpt_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
pipeline.save_pretrained(folder, safe_serialization=True)
|
30 |
+
pipeline = pipeline.to(torch_dtype=torch.float16)
|
31 |
pipeline.save_pretrained(folder, safe_serialization=True, variant="fp16")
|
32 |
|
33 |
return folder
|
|
|
45 |
return discussion
|
46 |
|
47 |
|
48 |
+
def convert(token: str, model_id: str, filename: str, progress=gr.Progress()):
|
49 |
api = HfApi()
|
50 |
|
51 |
pr_title = "Adding `diffusers` weights of this model"
|
|
|
55 |
os.makedirs(folder)
|
56 |
new_pr = None
|
57 |
try:
|
58 |
+
folder = convert_single(model_id, filename, folder, progress)
|
59 |
progress(0.7, desc="Uploading to Hub")
|
60 |
new_pr = api.upload_folder(folder_path=folder, path_in_repo="./", repo_id=model_id, repo_type="model", token=token, commit_message=pr_title, commit_description=COMMIT_MESSAGE.format(model_id), create_pr=True)
|
61 |
pr_number = new_pr.split("%2F")[-1].split("/")[0]
|