radames's picture
enable live pose conditining
60591c0
raw
history blame
4.97 kB
from controlnet_aux import OpenposeDetector
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from diffusers import UniPCMultistepScheduler
import gradio as gr
import torch
import base64
from io import BytesIO
from PIL import Image
# live conditioning
canvas_html = "<pose-canvas id='canvas-root' style='display:flex;max-width: 500px;margin: 0 auto;'></pose-canvas>"
load_js = """
async () => {
const url = "https://huggingface.co./datasets/radames/gradio-components/raw/main/pose-gradio.js"
fetch(url)
.then(res => res.text())
.then(text => {
const script = document.createElement('script');
script.type = "module"
script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' }));
document.head.appendChild(script);
});
}
"""
get_js_image = """
async (image_in_img, prompt, image_file_live_opt, live_conditioning) => {
const canvasEl = document.getElementById("canvas-root");
const data = canvasEl? canvasEl._data : null;
return [image_in_img, prompt, image_file_live_opt, data]
}
"""
# Constants
low_threshold = 100
high_threshold = 200
# Models
pose_model = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16
)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
# This command loads the individual model components on GPU on-demand. So, we don't
# need to explicitly call pipe.to("cuda").
pipe.enable_model_cpu_offload()
# xformers
pipe.enable_xformers_memory_efficient_attention()
# Generator seed,
generator = torch.manual_seed(0)
def get_pose(image):
return pose_model(image)
def generate_images(image, prompt, image_file_live_opt='file', live_conditioning=None):
if image is None and 'image' not in live_conditioning:
raise gr.Error("Please provide an image")
try:
if image_file_live_opt == 'file':
pose = get_pose(image)
elif image_file_live_opt == 'webcam':
base64_img = live_conditioning['image']
image_data = base64.b64decode(base64_img.split(',')[1])
pose = Image.open(BytesIO(image_data)).convert(
'RGB').resize((512, 512))
output = pipe(
prompt,
pose,
generator=generator,
num_images_per_prompt=3,
num_inference_steps=20,
)
all_outputs = []
all_outputs.append(pose)
for image in output.images:
all_outputs.append(image)
return all_outputs
except Exception as e:
raise gr.Error(str(e))
def toggle(choice):
if choice == "file":
return gr.update(visible=True, value=None), gr.update(visible=False, value=None)
elif choice == "webcam":
return gr.update(visible=False, value=None), gr.update(visible=True, value=canvas_html)
with gr.Blocks() as blocks:
gr.Markdown("""
## Generate Uncanny Faces with ControlNet Stable Diffusion
[Check out our blog to see how this was done (and train your own controlnet)](https://huggingface.co./blog/train-your-controlnet)
""")
with gr.Row():
live_conditioning = gr.JSON(value={}, visible=False)
with gr.Column():
image_file_live_opt = gr.Radio(["file", "webcam"], value="file",
label="How would you like to upload your image?")
image_in_img = gr.Image(source="upload", visible=True, type="pil")
canvas = gr.HTML(None, elem_id="canvas_html", visible=False)
image_file_live_opt.change(fn=toggle,
inputs=[image_file_live_opt],
outputs=[image_in_img, canvas],
queue=False)
prompt = gr.Textbox(
label="Enter your prompt",
max_lines=1,
placeholder="best quality, extremely detailed",
)
run_button = gr.Button("Generate")
with gr.Column():
gallery = gr.Gallery().style(grid=[2], height="auto")
run_button.click(fn=generate_images,
inputs=[image_in_img, prompt,
image_file_live_opt, live_conditioning],
outputs=[gallery],
_js=get_js_image)
blocks.load(None, None, None, _js=load_js)
gr.Examples(fn=generate_images,
examples=[
["./yoga1.jpeg",
"best quality, extremely detailed"]
],
inputs=[image_in_img, prompt],
outputs=[gallery],
cache_examples=True)
blocks.launch(debug=True)