File size: 10,934 Bytes
ebed6a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import collections
import os.path
import sys
import gc
from collections import namedtuple
import torch
import re
import safetensors.torch
from omegaconf import OmegaConf

from ldm.util import instantiate_from_config

from modules import shared, modelloader, devices, script_callbacks, sd_vae
from modules.paths import models_path
from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting

model_dir = "Stable-diffusion"
model_path = os.path.abspath(os.path.join(models_path, model_dir))

CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name', 'config'])
checkpoints_list = {}
checkpoints_loaded = collections.OrderedDict()

try:
    # this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.

    from transformers import logging, CLIPModel

    logging.set_verbosity_error()
except Exception:
    pass


def setup_model():
    if not os.path.exists(model_path):
        os.makedirs(model_path)

    list_models()


def checkpoint_tiles(): 
    convert = lambda name: int(name) if name.isdigit() else name.lower() 
    alphanumeric_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)] 
    return sorted([x.title for x in checkpoints_list.values()], key = alphanumeric_key)


def list_models():
    checkpoints_list.clear()
    model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"])

    def modeltitle(path, shorthash):
        abspath = os.path.abspath(path)

        if shared.cmd_opts.ckpt_dir is not None and abspath.startswith(shared.cmd_opts.ckpt_dir):
            name = abspath.replace(shared.cmd_opts.ckpt_dir, '')
        elif abspath.startswith(model_path):
            name = abspath.replace(model_path, '')
        else:
            name = os.path.basename(path)

        if name.startswith("\\") or name.startswith("/"):
            name = name[1:]

        shortname = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0]

        return f'{name} [{shorthash}]', shortname

    cmd_ckpt = shared.cmd_opts.ckpt
    if os.path.exists(cmd_ckpt):
        h = model_hash(cmd_ckpt)
        title, short_model_name = modeltitle(cmd_ckpt, h)
        checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name, shared.cmd_opts.config)
        shared.opts.data['sd_model_checkpoint'] = title
    elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
        print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr)
    for filename in model_list:
        h = model_hash(filename)
        title, short_model_name = modeltitle(filename, h)

        basename, _ = os.path.splitext(filename)
        config = basename + ".yaml"
        if not os.path.exists(config):
            config = shared.cmd_opts.config

        checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name, config)


def get_closet_checkpoint_match(searchString):
    applicable = sorted([info for info in checkpoints_list.values() if searchString in info.title], key = lambda x:len(x.title))
    if len(applicable) > 0:
        return applicable[0]
    return None


def model_hash(filename):
    try:
        with open(filename, "rb") as file:
            import hashlib
            m = hashlib.sha256()

            file.seek(0x100000)
            m.update(file.read(0x10000))
            return m.hexdigest()[0:8]
    except FileNotFoundError:
        return 'NOFILE'


def select_checkpoint():
    model_checkpoint = shared.opts.sd_model_checkpoint
    checkpoint_info = checkpoints_list.get(model_checkpoint, None)
    if checkpoint_info is not None:
        return checkpoint_info

    if len(checkpoints_list) == 0:
        print(f"No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr)
        if shared.cmd_opts.ckpt is not None:
            print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr)
        print(f" - directory {model_path}", file=sys.stderr)
        if shared.cmd_opts.ckpt_dir is not None:
            print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr)
        print(f"Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr)
        exit(1)

    checkpoint_info = next(iter(checkpoints_list.values()))
    if model_checkpoint is not None:
        print(f"Checkpoint {model_checkpoint} not found; loading fallback {checkpoint_info.title}", file=sys.stderr)

    return checkpoint_info


chckpoint_dict_replacements = {
    'cond_stage_model.transformer.embeddings.': 'cond_stage_model.transformer.text_model.embeddings.',
    'cond_stage_model.transformer.encoder.': 'cond_stage_model.transformer.text_model.encoder.',
    'cond_stage_model.transformer.final_layer_norm.': 'cond_stage_model.transformer.text_model.final_layer_norm.',
}


def transform_checkpoint_dict_key(k):
    for text, replacement in chckpoint_dict_replacements.items():
        if k.startswith(text):
            k = replacement + k[len(text):]

    return k


def get_state_dict_from_checkpoint(pl_sd):
    pl_sd = pl_sd.pop("state_dict", pl_sd)
    pl_sd.pop("state_dict", None)

    sd = {}
    for k, v in pl_sd.items():
        new_key = transform_checkpoint_dict_key(k)

        if new_key is not None:
            sd[new_key] = v

    pl_sd.clear()
    pl_sd.update(sd)

    return pl_sd


def read_state_dict(checkpoint_file, print_global_state=False, map_location=None):
    _, extension = os.path.splitext(checkpoint_file)
    if extension.lower() == ".safetensors":
        pl_sd = safetensors.torch.load_file(checkpoint_file, device=map_location or shared.weight_load_location)
    else:
        pl_sd = torch.load(checkpoint_file, map_location=map_location or shared.weight_load_location)

    if print_global_state and "global_step" in pl_sd:
        print(f"Global Step: {pl_sd['global_step']}")

    sd = get_state_dict_from_checkpoint(pl_sd)
    return sd


def load_model_weights(model, checkpoint_info, vae_file="auto"):
    checkpoint_file = checkpoint_info.filename
    sd_model_hash = checkpoint_info.hash

    cache_enabled = shared.opts.sd_checkpoint_cache > 0

    if cache_enabled and checkpoint_info in checkpoints_loaded:
        # use checkpoint cache
        print(f"Loading weights [{sd_model_hash}] from cache")
        model.load_state_dict(checkpoints_loaded[checkpoint_info])
    else:
        # load from file
        print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")

        sd = read_state_dict(checkpoint_file)
        model.load_state_dict(sd, strict=False)
        del sd
        
        if cache_enabled:
            # cache newly loaded model
            checkpoints_loaded[checkpoint_info] = model.state_dict().copy()

        if shared.cmd_opts.opt_channelslast:
            model.to(memory_format=torch.channels_last)

        if not shared.cmd_opts.no_half:
            vae = model.first_stage_model

            # with --no-half-vae, remove VAE from model when doing half() to prevent its weights from being converted to float16
            if shared.cmd_opts.no_half_vae:
                model.first_stage_model = None

            model.half()
            model.first_stage_model = vae

        devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16
        devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16

        model.first_stage_model.to(devices.dtype_vae)

    # clean up cache if limit is reached
    if cache_enabled:
        while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache + 1: # we need to count the current model
            checkpoints_loaded.popitem(last=False)  # LRU

    model.sd_model_hash = sd_model_hash
    model.sd_model_checkpoint = checkpoint_file
    model.sd_checkpoint_info = checkpoint_info

    vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file)
    sd_vae.load_vae(model, vae_file)


def load_model(checkpoint_info=None):
    from modules import lowvram, sd_hijack
    checkpoint_info = checkpoint_info or select_checkpoint()

    if checkpoint_info.config != shared.cmd_opts.config:
        print(f"Loading config from: {checkpoint_info.config}")

    if shared.sd_model:
        sd_hijack.model_hijack.undo_hijack(shared.sd_model)
        shared.sd_model = None
        gc.collect()
        devices.torch_gc()

    sd_config = OmegaConf.load(checkpoint_info.config)
    
    if should_hijack_inpainting(checkpoint_info):
        # Hardcoded config for now...
        sd_config.model.target = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
        sd_config.model.params.use_ema = False
        sd_config.model.params.conditioning_key = "hybrid"
        sd_config.model.params.unet_config.params.in_channels = 9

        # Create a "fake" config with a different name so that we know to unload it when switching models.
        checkpoint_info = checkpoint_info._replace(config=checkpoint_info.config.replace(".yaml", "-inpainting.yaml"))

    do_inpainting_hijack()

    if shared.cmd_opts.no_half:
        sd_config.model.params.unet_config.params.use_fp16 = False

    sd_model = instantiate_from_config(sd_config.model)
    load_model_weights(sd_model, checkpoint_info)

    if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
        lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram)
    else:
        sd_model.to(shared.device)

    sd_hijack.model_hijack.hijack(sd_model)

    sd_model.eval()
    shared.sd_model = sd_model

    script_callbacks.model_loaded_callback(sd_model)

    print(f"Model loaded.")
    return sd_model


def reload_model_weights(sd_model=None, info=None):
    from modules import lowvram, devices, sd_hijack
    checkpoint_info = info or select_checkpoint()
 
    if not sd_model:
        sd_model = shared.sd_model

    if sd_model.sd_model_checkpoint == checkpoint_info.filename:
        return

    if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info):
        del sd_model
        checkpoints_loaded.clear()
        load_model(checkpoint_info)
        return shared.sd_model

    if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
        lowvram.send_everything_to_cpu()
    else:
        sd_model.to(devices.cpu)

    sd_hijack.model_hijack.undo_hijack(sd_model)

    load_model_weights(sd_model, checkpoint_info)

    sd_hijack.model_hijack.hijack(sd_model)
    script_callbacks.model_loaded_callback(sd_model)

    if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
        sd_model.to(devices.device)

    print(f"Weights loaded.")
    return sd_model