from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from diffusers import UniPCMultistepScheduler
import gradio as gr
import numpy as np
import torch
import base64
import cv2
from io import BytesIO
from PIL import Image, ImageFilter
from share_btn import community_icon_html, loading_icon_html, share_js, share_btn_css
# Constants
low_threshold = 100
high_threshold = 200
canvas_html = ''
load_js = """
async () => {
const url = "https://huggingface.co./datasets/mishig/gradio-components/raw/main/mannequinAll.js"
fetch(url)
.then(res => res.text())
.then(text => {
const script = document.createElement('script');
script.type = "module"
script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' }));
document.head.appendChild(script);
});
}
"""
get_js_image = """
async (canvas, prompt) => {
const poseMakerEl = document.querySelector("pose-maker");
const imgBase64 = poseMakerEl.captureScreenshotDepthMap();
return [imgBase64, prompt]
}
"""
# Models
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16
)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
# This command loads the individual model components on GPU on-demand. So, we don't
# need to explicitly call pipe.to("cuda").
pipe.enable_model_cpu_offload()
# xformers
pipe.enable_xformers_memory_efficient_attention()
# Generator seed,
generator = torch.manual_seed(0)
def get_canny_filter(image):
if not isinstance(image, np.ndarray):
image = np.array(image)
image = cv2.Canny(image, low_threshold, high_threshold)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)
return canny_image
def generate_images(canvas, prompt):
try:
base64_img = canvas
image_data = base64.b64decode(base64_img.split(',')[1])
input_img = Image.open(BytesIO(image_data)).convert(
'RGB').resize((512, 512))
input_img = input_img.filter(ImageFilter.GaussianBlur(radius=2))
input_img = get_canny_filter(input_img)
output = pipe(
f'{prompt}, best quality, extremely detailed',
input_img,
generator=generator,
num_images_per_prompt=2,
num_inference_steps=20,
negative_prompt="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
)
all_outputs = []
for image in output.images:
all_outputs.append(image)
return all_outputs
except Exception as e:
raise gr.Error(str(e))
def placeholder_fn(axis):
pass
js_change_rotation_axis = """
async (axis) => {
const poseMakerEl = document.querySelector("pose-maker");
poseMakerEl.changeRotationAxis(axis);
}
"""
js_pose_template = """
async (pose) => {
const poseMakerEl = document.querySelector("pose-maker");
poseMakerEl.setPose(pose);
}
"""
with gr.Blocks(css=share_btn_css) as blocks:
gr.HTML(
"""
Pose in 3D & Render with ControlNet (SD-1.5)
Using ControlNet and three.js/mannequin.js
For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
"""
)
with gr.Row():
with gr.Column():
canvas = gr.HTML(canvas_html, elem_id="canvas_html", visible=True)
with gr.Row():
rotation_axis = gr.Radio(["x", "y", "z"], value="x", label="Joint rotation axis")
pose_template = gr.Radio(["regular", "ballet", "handstand", "split", "kick", "chilling"], value="regular", label="Pose template")
prompt = gr.Textbox(
label="Enter your prompt",
max_lines=1,
placeholder="best quality, extremely detailed",
elem_id="prompt",
)
run_button = gr.Button("Generate")
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button("Share to community", elem_id="share-btn")
with gr.Column():
gallery = gr.Gallery(elem_id="gallery").style(grid=[2], height="auto")
rotation_axis.change(fn=placeholder_fn,
inputs=[rotation_axis],
outputs=[],
queue=False,
_js=js_change_rotation_axis)
pose_template.change(fn=placeholder_fn,
inputs=[pose_template],
outputs=[],
queue=False,
_js=js_pose_template)
run_button.click(fn=generate_images,
inputs=[canvas, prompt],
outputs=[gallery],
_js=get_js_image)
share_button.click(None, [], [], _js=share_js)
blocks.load(None, None, None, _js=load_js)
blocks.launch(debug=True)