|
from huggingface_hub import hf_hub_download, model_info |
|
import gradio as gr |
|
import json |
|
|
|
COMPONENT_FILTER = [ |
|
"scheduler", |
|
"feature_extractor", |
|
"tokenizer", |
|
"tokenizer_2", |
|
"_class_name", |
|
"_diffusers_version", |
|
] |
|
|
|
ARTICLE = """ |
|
## Notes on how to use the `controlnet_id` and `t2i_adapter_id` fields |
|
|
|
Both `controlnet_id` and `t2i_adapter_id` fields support passing multiple checkpoint ids, |
|
e.g., "thibaud/controlnet-openpose-sdxl-1.0,diffusers/controlnet-canny-sdxl-1.0". For |
|
`t2i_adapter_id`, this could be like - "TencentARC/t2iadapter_keypose_sd14v1,TencentARC/t2iadapter_depth_sd14v1". |
|
|
|
Users should take care of passing the underlying base `pipeline_id` appropriately. For example, |
|
passing `pipeline_id` as "runwayml/stable-diffusion-v1-5" and `controlnet_id` as "thibaud/controlnet-openpose-sdxl-1.0" |
|
won't result in an error but these two things aren't meant to compatible. You should pass |
|
a `controlnet_id` that is compatible with "runwayml/stable-diffusion-v1-5". |
|
|
|
For further clarification on this topic, feel free to open a [discussion](https://huggingface.co./spaces/diffusers/compute-pipeline-size/discussions). |
|
|
|
📔 Also, note that `revision` field is only reserved for `pipeline_id`. It won't have any effect on the |
|
`controlnet_id` or `t2i_adapter_id`. |
|
""" |
|
|
|
ALLOWED_VARIANTS = ["fp32", "fp16", "bf16"] |
|
|
|
|
|
def format_size(num: int) -> str: |
|
"""Format size in bytes into a human-readable string. |
|
Taken from https://stackoverflow.com/a/1094933 |
|
""" |
|
num_f = float(num) |
|
for unit in ["", "K", "M", "G", "T", "P", "E", "Z"]: |
|
if abs(num_f) < 1000.0: |
|
return f"{num_f:3.1f}{unit}" |
|
num_f /= 1000.0 |
|
return f"{num_f:.1f}Y" |
|
|
|
|
|
def format_output(pipeline_id, memory_mapping, variant=None, controlnet_mapping=None, t2i_adapter_mapping=None): |
|
if variant is None: |
|
variant = "fp32" |
|
|
|
markdown_str = f"## {pipeline_id} ({variant})\n" |
|
|
|
if memory_mapping: |
|
for component, memory in memory_mapping.items(): |
|
markdown_str += f"* {component}: {format_size(memory)}\n" |
|
if controlnet_mapping: |
|
markdown_str += f"\n## ControlNet(s) ({variant})\n" |
|
for controlnet_id, memory in controlnet_mapping.items(): |
|
markdown_str += f"* {controlnet_id}: {format_size(memory)}\n" |
|
if t2i_adapter_mapping: |
|
markdown_str += f"\n## T2I-Adapters(s) ({variant})\n" |
|
for t2_adapter_id, memory in t2i_adapter_mapping.items(): |
|
markdown_str += f"* {t2_adapter_id}: {format_size(memory)}\n" |
|
|
|
return markdown_str |
|
|
|
|
|
def load_model_index(pipeline_id, token=None, revision=None): |
|
index_path = hf_hub_download(repo_id=pipeline_id, filename="model_index.json", revision=revision, token=token) |
|
with open(index_path, "r") as f: |
|
index_dict = json.load(f) |
|
return index_dict |
|
|
|
|
|
def get_individual_model_memory(id, token, variant, extension): |
|
|
|
files_in_repo = model_info(id, token=token, files_metadata=True).siblings |
|
|
|
|
|
if variant: |
|
candidates = [x for x in files_in_repo if (extension in x.rfilename) and (variant in x.rfilename)] |
|
if not candidates: |
|
raise ValueError(f"Requested variant ({variant}) for {id} couldn't be found with {extension} extension.") |
|
else: |
|
candidates = [ |
|
x |
|
for x in files_in_repo |
|
if (extension in x.rfilename) and all(var not in x.rfilename for var in ALLOWED_VARIANTS[1:]) |
|
] |
|
if not candidates: |
|
raise ValueError(f"No file for {id} could be found with {extension} extension without specified variants.") |
|
|
|
|
|
return candidates[0].size |
|
|
|
|
|
def get_component_wise_memory( |
|
pipeline_id, |
|
controlnet_id=None, |
|
t2i_adapter_id=None, |
|
token=None, |
|
variant=None, |
|
revision=None, |
|
extension=".safetensors", |
|
): |
|
if controlnet_id == "": |
|
controlnet_id = None |
|
|
|
if t2i_adapter_id == "": |
|
t2i_adapter_id = None |
|
|
|
if controlnet_id and t2i_adapter_id: |
|
raise ValueError("Both `controlnet_id` and `t2i_adapter_id` cannot be provided.") |
|
|
|
if token == "": |
|
token = None |
|
|
|
if revision == "": |
|
revision = None |
|
|
|
if variant == "fp32": |
|
variant = None |
|
|
|
|
|
controlnet_mapping = t2_adapter_mapping = None |
|
if controlnet_id is not None: |
|
controlnet_id = controlnet_id.split(",") |
|
controlnet_sizes = [ |
|
get_individual_model_memory(id_, token=token, variant=variant, extension=extension) |
|
for id_ in controlnet_id |
|
] |
|
controlnet_mapping = dict(zip(controlnet_id, controlnet_sizes)) |
|
elif t2i_adapter_id is not None: |
|
t2i_adapter_id = t2i_adapter_id.split(",") |
|
t2i_adapter_sizes = [ |
|
get_individual_model_memory(id_, token=token, variant=variant, extension=extension) |
|
for id_ in t2i_adapter_id |
|
] |
|
t2_adapter_mapping = dict(zip(t2i_adapter_id, t2i_adapter_sizes)) |
|
|
|
print(f"pipeline_id: {pipeline_id}, variant: {variant}, revision: {revision}, extension: {extension}") |
|
|
|
|
|
files_in_repo = model_info(pipeline_id, revision=revision, token=token, files_metadata=True).siblings |
|
index_dict = load_model_index(pipeline_id, token=token, revision=revision) |
|
|
|
|
|
|
|
print(f"Index dict: {index_dict}") |
|
for current_component in index_dict: |
|
if ( |
|
current_component not in COMPONENT_FILTER |
|
and isinstance(index_dict[current_component], list) |
|
and len(index_dict[current_component]) == 2 |
|
): |
|
current_component_fileobjs = list(filter(lambda x: current_component in x.rfilename, files_in_repo)) |
|
|
|
if current_component_fileobjs: |
|
current_component_filenames = [fileobj.rfilename for fileobj in current_component_fileobjs] |
|
condition = ( |
|
lambda filename: extension in filename and variant in filename |
|
if variant is not None |
|
else lambda filename: extension in filename |
|
) |
|
variant_present_with_extension = any(condition(filename) for filename in current_component_filenames) |
|
if not variant_present_with_extension: |
|
formatted_filenames = ", ".join(current_component_filenames) |
|
raise ValueError( |
|
f"Requested extension ({extension}) and variant ({variant}) not present for {current_component}." |
|
f" Available files for this component: {formatted_filenames}." |
|
) |
|
else: |
|
raise ValueError(f"Problem with {current_component}.") |
|
|
|
|
|
is_text_encoder_shared = any(".index.json" in file_obj.rfilename for file_obj in files_in_repo) |
|
component_wise_memory = {} |
|
if is_text_encoder_shared: |
|
for current_file in files_in_repo: |
|
if "text_encoder" in current_file.rfilename: |
|
if not current_file.rfilename.endswith(".json") and current_file.rfilename.endswith(extension): |
|
if variant is not None and variant in current_file.rfilename: |
|
selected_file = current_file |
|
else: |
|
selected_file = current_file |
|
if "text_encoder" not in component_wise_memory: |
|
component_wise_memory["text_encoder"] = selected_file.size |
|
else: |
|
component_wise_memory["text_encoder"] += selected_file.size |
|
|
|
|
|
if is_text_encoder_shared: |
|
COMPONENT_FILTER.append("text_encoder") |
|
|
|
for current_file in files_in_repo: |
|
if all(substring not in current_file.rfilename for substring in COMPONENT_FILTER): |
|
is_folder = len(current_file.rfilename.split("/")) == 2 |
|
if is_folder and current_file.rfilename.split("/")[0] in index_dict: |
|
selected_file = None |
|
if not current_file.rfilename.endswith(".json") and current_file.rfilename.endswith(extension): |
|
component = current_file.rfilename.split("/")[0] |
|
if ( |
|
variant is not None |
|
and variant in current_file.rfilename |
|
and "ema" not in current_file.rfilename |
|
): |
|
selected_file = current_file |
|
elif variant is None and "ema" not in current_file.rfilename: |
|
selected_file = current_file |
|
|
|
if selected_file is not None: |
|
component_wise_memory[component] = selected_file.size |
|
|
|
return format_output(pipeline_id, component_wise_memory, variant, controlnet_mapping, t2_adapter_mapping) |
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
with gr.Column(): |
|
gr.Markdown( |
|
"""<img src="https://huggingface.co./spaces/hf-accelerate/model-memory-usage/resolve/main/measure_model_size.png" style="float: left;" width="150" height="175"><h1>🧨 Diffusers Pipeline Memory Calculator</h1> |
|
This tool will help you to gauge the memory requirements of a Diffusers pipeline. Pipelines containing text encoders with sharded checkpoints are also supported |
|
(PixArt-Alpha, for example) 🤗 See instructions below the form on how to pass `controlnet_id` or `t2_adapter_id`. When performing inference, expect to add up to an |
|
additional 20% to this as found by [EleutherAI](https://blog.eleuther.ai/transformer-math/). The final memory requirement will also depend on the requested resolution. You can click on one |
|
of the examples below the "Calculate Memory Usage" button to get started. Design adapted from [this Space](https://huggingface.co./spaces/hf-accelerate/model-memory-usage). |
|
""" |
|
) |
|
out_text = gr.Markdown() |
|
with gr.Row(): |
|
pipeline_id = gr.Textbox(lines=1, label="pipeline_id", info="Example: runwayml/stable-diffusion-v1-5") |
|
with gr.Row(): |
|
controlnet_id = gr.Textbox(lines=1, label="controlnet_id", info="Example: lllyasviel/sd-controlnet-canny") |
|
t2i_adapter_id = gr.Textbox( |
|
lines=1, label="t2i_adapter_id", info="Example: TencentARC/t2iadapter_color_sd14v1" |
|
) |
|
with gr.Row(): |
|
token = gr.Textbox(lines=1, label="hf_token", info="Pass this in case of private/gated repositories.") |
|
variant = gr.Radio( |
|
ALLOWED_VARIANTS, |
|
label="variant", |
|
info="Precision to use for calculation.", |
|
) |
|
revision = gr.Textbox(lines=1, label="revision", info="Repository revision to use.") |
|
extension = gr.Radio( |
|
[".bin", ".safetensors"], |
|
label="extension", |
|
info="Extension to use.", |
|
) |
|
with gr.Row(): |
|
btn = gr.Button("Calculate Memory Usage") |
|
|
|
gr.Markdown("## Examples") |
|
gr.Examples( |
|
[ |
|
["runwayml/stable-diffusion-v1-5", None, None, None, "fp32", None, ".safetensors"], |
|
["PixArt-alpha/PixArt-XL-2-1024-MS", None, None, None, "fp32", None, ".safetensors"], |
|
[ |
|
"runwayml/stable-diffusion-v1-5", |
|
"lllyasviel/sd-controlnet-canny", |
|
None, |
|
None, |
|
"fp32", |
|
None, |
|
".safetensors", |
|
], |
|
[ |
|
"stabilityai/stable-diffusion-xl-base-1.0", |
|
None, |
|
"TencentARC/t2i-adapter-lineart-sdxl-1.0,TencentARC/t2i-adapter-canny-sdxl-1.0", |
|
None, |
|
"fp16", |
|
None, |
|
".safetensors", |
|
], |
|
["stabilityai/stable-cascade", None, None, None, "bf16", None, ".safetensors"], |
|
["Deci/DeciDiffusion-v2-0", None, None, None, "fp32", None, ".safetensors"], |
|
], |
|
[pipeline_id, controlnet_id, t2i_adapter_id, token, variant, revision, extension], |
|
out_text, |
|
get_component_wise_memory, |
|
cache_examples=False, |
|
) |
|
|
|
gr.Markdown(ARTICLE) |
|
|
|
btn.click( |
|
get_component_wise_memory, |
|
inputs=[pipeline_id, controlnet_id, t2i_adapter_id, token, variant, revision, extension], |
|
outputs=[out_text], |
|
api_name=False, |
|
) |
|
|
|
demo.launch(show_error=True) |
|
|