Commit
·
d44229e
1
Parent(s):
c803873
up
Browse files- app.py +325 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import (
|
2 |
+
StableDiffusionPipeline,
|
3 |
+
StableDiffusionImg2ImgPipeline,
|
4 |
+
DPMSolverMultistepScheduler,
|
5 |
+
)
|
6 |
+
import gradio as gr
|
7 |
+
import torch
|
8 |
+
from PIL import Image
|
9 |
+
import time
|
10 |
+
import psutil
|
11 |
+
import random
|
12 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
13 |
+
|
14 |
+
|
15 |
+
start_time = time.time()
|
16 |
+
current_steps = 25
|
17 |
+
|
18 |
+
SAFETY_CHECKER = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=torch.float16)
|
19 |
+
|
20 |
+
|
21 |
+
class Model:
|
22 |
+
def __init__(self, name, path=""):
|
23 |
+
self.name = name
|
24 |
+
self.path = path
|
25 |
+
|
26 |
+
if path != "":
|
27 |
+
self.pipe_t2i = StableDiffusionPipeline.from_pretrained(
|
28 |
+
path, torch_dtype=torch.float16, safety_checker=SAFETY_CHECKER
|
29 |
+
)
|
30 |
+
self.pipe_t2i.scheduler = DPMSolverMultistepScheduler.from_config(
|
31 |
+
self.pipe_t2i.scheduler.config
|
32 |
+
)
|
33 |
+
self.pipe_i2i = StableDiffusionImg2ImgPipeline(**self.pipe_t2i.components)
|
34 |
+
else:
|
35 |
+
self.pipe_t2i = None
|
36 |
+
self.pipe_i2i = None
|
37 |
+
|
38 |
+
|
39 |
+
models = [
|
40 |
+
Model("Protogen v2.2 (Anime)", "darkstorm2150/Protogen_v2.2_Official_Release"),
|
41 |
+
Model("Protogen x3.4 (Photorealism)", "darkstorm2150/Protogen_x3.4_Official_Release"),
|
42 |
+
Model("Protogen x5.3 (Photorealism)", "darkstorm2150/Protogen_x5.3_Official_Release"),
|
43 |
+
Model("Protogen x5.8 Rebuilt (Scifi+Anime)", "darkstorm2150/Protogen_x5.8_Official_Release"),
|
44 |
+
Model("Protogen Dragon (RPG Model)", "darkstorm2150/Protogen_Dragon_Official_Release"),
|
45 |
+
Model("Protogen Nova", "darkstorm2150/Protogen_Nova_Official_Release"),
|
46 |
+
Model("Protogen Eclipse", "darkstorm2150/Protogen_Eclipse_Official_Release"),
|
47 |
+
Model("Protogen Infinity", "darkstorm2150/Protogen_Infinity_Official_Release"),
|
48 |
+
]
|
49 |
+
|
50 |
+
MODELS = {m.name: m for m in models}
|
51 |
+
|
52 |
+
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
53 |
+
|
54 |
+
|
55 |
+
def error_str(error, title="Error"):
|
56 |
+
return (
|
57 |
+
f"""#### {title}
|
58 |
+
{error}"""
|
59 |
+
if error
|
60 |
+
else ""
|
61 |
+
)
|
62 |
+
|
63 |
+
|
64 |
+
def inference(
|
65 |
+
model_name,
|
66 |
+
prompt,
|
67 |
+
guidance,
|
68 |
+
steps,
|
69 |
+
n_images=1,
|
70 |
+
width=512,
|
71 |
+
height=512,
|
72 |
+
seed=0,
|
73 |
+
img=None,
|
74 |
+
strength=0.5,
|
75 |
+
neg_prompt="",
|
76 |
+
):
|
77 |
+
|
78 |
+
print(psutil.virtual_memory()) # print memory usage
|
79 |
+
|
80 |
+
if seed == 0:
|
81 |
+
seed = random.randint(0, 2147483647)
|
82 |
+
|
83 |
+
generator = torch.Generator("cuda").manual_seed(seed)
|
84 |
+
|
85 |
+
try:
|
86 |
+
if img is not None:
|
87 |
+
return (
|
88 |
+
img_to_img(
|
89 |
+
model_name,
|
90 |
+
prompt,
|
91 |
+
n_images,
|
92 |
+
neg_prompt,
|
93 |
+
img,
|
94 |
+
strength,
|
95 |
+
guidance,
|
96 |
+
steps,
|
97 |
+
width,
|
98 |
+
height,
|
99 |
+
generator,
|
100 |
+
seed,
|
101 |
+
),
|
102 |
+
f"Done. Seed: {seed}",
|
103 |
+
)
|
104 |
+
else:
|
105 |
+
return (
|
106 |
+
txt_to_img(
|
107 |
+
model_name,
|
108 |
+
prompt,
|
109 |
+
n_images,
|
110 |
+
neg_prompt,
|
111 |
+
guidance,
|
112 |
+
steps,
|
113 |
+
width,
|
114 |
+
height,
|
115 |
+
generator,
|
116 |
+
seed,
|
117 |
+
),
|
118 |
+
f"Done. Seed: {seed}",
|
119 |
+
)
|
120 |
+
except Exception as e:
|
121 |
+
return None, error_str(e)
|
122 |
+
|
123 |
+
|
124 |
+
def txt_to_img(
|
125 |
+
model_name,
|
126 |
+
prompt,
|
127 |
+
n_images,
|
128 |
+
neg_prompt,
|
129 |
+
guidance,
|
130 |
+
steps,
|
131 |
+
width,
|
132 |
+
height,
|
133 |
+
generator,
|
134 |
+
seed,
|
135 |
+
):
|
136 |
+
pipe = MODELS[model_name].pipe_t2i
|
137 |
+
|
138 |
+
if torch.cuda.is_available():
|
139 |
+
pipe = pipe.to("cuda")
|
140 |
+
pipe.enable_xformers_memory_efficient_attention()
|
141 |
+
|
142 |
+
result = pipe(
|
143 |
+
prompt,
|
144 |
+
negative_prompt=neg_prompt,
|
145 |
+
num_images_per_prompt=n_images,
|
146 |
+
num_inference_steps=int(steps),
|
147 |
+
guidance_scale=guidance,
|
148 |
+
width=width,
|
149 |
+
height=height,
|
150 |
+
generator=generator,
|
151 |
+
)
|
152 |
+
|
153 |
+
pipe.to("cpu")
|
154 |
+
|
155 |
+
return replace_nsfw_images(result)
|
156 |
+
|
157 |
+
|
158 |
+
def img_to_img(
|
159 |
+
model_name,
|
160 |
+
prompt,
|
161 |
+
n_images,
|
162 |
+
neg_prompt,
|
163 |
+
img,
|
164 |
+
strength,
|
165 |
+
guidance,
|
166 |
+
steps,
|
167 |
+
width,
|
168 |
+
height,
|
169 |
+
generator,
|
170 |
+
seed,
|
171 |
+
):
|
172 |
+
pipe = MODELS[model_name].pipe_i2i
|
173 |
+
|
174 |
+
if torch.cuda.is_available():
|
175 |
+
pipe = pipe.to("cuda")
|
176 |
+
pipe.enable_xformers_memory_efficient_attention()
|
177 |
+
|
178 |
+
ratio = min(height / img.height, width / img.width)
|
179 |
+
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
|
180 |
+
|
181 |
+
result = pipe(
|
182 |
+
prompt,
|
183 |
+
negative_prompt=neg_prompt,
|
184 |
+
num_images_per_prompt=n_images,
|
185 |
+
image=img,
|
186 |
+
num_inference_steps=int(steps),
|
187 |
+
strength=strength,
|
188 |
+
guidance_scale=guidance,
|
189 |
+
generator=generator,
|
190 |
+
)
|
191 |
+
|
192 |
+
pipe.to("cpu")
|
193 |
+
|
194 |
+
return replace_nsfw_images(result)
|
195 |
+
|
196 |
+
|
197 |
+
def replace_nsfw_images(results):
|
198 |
+
for i in range(len(results.images)):
|
199 |
+
if results.nsfw_content_detected[i]:
|
200 |
+
results.images[i] = Image.open("nsfw.png")
|
201 |
+
return results.images
|
202 |
+
|
203 |
+
|
204 |
+
with gr.Blocks(css="style.css") as demo:
|
205 |
+
with gr.Row():
|
206 |
+
|
207 |
+
with gr.Column(scale=55):
|
208 |
+
with gr.Group():
|
209 |
+
prompt = gr.Textbox(
|
210 |
+
label="Repo id on Hub",
|
211 |
+
placeholder="Path to model, e.g. CompVis/stable-diffusion-v1-4",
|
212 |
+
)
|
213 |
+
with gr.Box(visible=False) as custom_model_group:
|
214 |
+
custom_model_path = gr.Textbox(
|
215 |
+
label="Custom model path",
|
216 |
+
placeholder="Path to model, e.g. darkstorm2150/Protogen_x3.4_Official_Release",
|
217 |
+
interactive=True,
|
218 |
+
)
|
219 |
+
gr.HTML(
|
220 |
+
"<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>"
|
221 |
+
)
|
222 |
+
|
223 |
+
with gr.Row():
|
224 |
+
prompt = gr.Textbox(
|
225 |
+
label="Prompt",
|
226 |
+
show_label=False,
|
227 |
+
max_lines=2,
|
228 |
+
placeholder="Enter prompt.",
|
229 |
+
).style(container=False)
|
230 |
+
generate = gr.Button(value="Generate").style(
|
231 |
+
rounded=(False, True, True, False)
|
232 |
+
)
|
233 |
+
|
234 |
+
# image_out = gr.Image(height=512)
|
235 |
+
gallery = gr.Gallery(
|
236 |
+
label="Generated images", show_label=False, elem_id="gallery"
|
237 |
+
).style(grid=[2], height="auto")
|
238 |
+
|
239 |
+
state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style(
|
240 |
+
container=False
|
241 |
+
)
|
242 |
+
error_output = gr.Markdown()
|
243 |
+
|
244 |
+
with gr.Column(scale=45):
|
245 |
+
with gr.Tab("Options"):
|
246 |
+
with gr.Group():
|
247 |
+
neg_prompt = gr.Textbox(
|
248 |
+
label="Negative prompt",
|
249 |
+
placeholder="What to exclude from the image",
|
250 |
+
)
|
251 |
+
|
252 |
+
n_images = gr.Slider(
|
253 |
+
label="Images", value=1, minimum=1, maximum=4, step=1
|
254 |
+
)
|
255 |
+
|
256 |
+
with gr.Row():
|
257 |
+
guidance = gr.Slider(
|
258 |
+
label="Guidance scale", value=7.5, maximum=15
|
259 |
+
)
|
260 |
+
steps = gr.Slider(
|
261 |
+
label="Steps",
|
262 |
+
value=current_steps,
|
263 |
+
minimum=2,
|
264 |
+
maximum=75,
|
265 |
+
step=1,
|
266 |
+
)
|
267 |
+
|
268 |
+
with gr.Row():
|
269 |
+
width = gr.Slider(
|
270 |
+
label="Width", value=512, minimum=64, maximum=1024, step=8
|
271 |
+
)
|
272 |
+
height = gr.Slider(
|
273 |
+
label="Height", value=512, minimum=64, maximum=1024, step=8
|
274 |
+
)
|
275 |
+
|
276 |
+
seed = gr.Slider(
|
277 |
+
0, 2147483647, label="Seed (0 = random)", value=0, step=1
|
278 |
+
)
|
279 |
+
|
280 |
+
with gr.Tab("Image to image"):
|
281 |
+
with gr.Group():
|
282 |
+
image = gr.Image(
|
283 |
+
label="Image", height=256, tool="editor", type="pil"
|
284 |
+
)
|
285 |
+
strength = gr.Slider(
|
286 |
+
label="Transformation strength",
|
287 |
+
minimum=0,
|
288 |
+
maximum=1,
|
289 |
+
step=0.01,
|
290 |
+
value=0.5,
|
291 |
+
)
|
292 |
+
|
293 |
+
inputs = [
|
294 |
+
model_name,
|
295 |
+
prompt,
|
296 |
+
guidance,
|
297 |
+
steps,
|
298 |
+
n_images,
|
299 |
+
width,
|
300 |
+
height,
|
301 |
+
seed,
|
302 |
+
image,
|
303 |
+
strength,
|
304 |
+
neg_prompt,
|
305 |
+
]
|
306 |
+
outputs = [gallery, error_output]
|
307 |
+
prompt.submit(inference, inputs=inputs, outputs=outputs)
|
308 |
+
generate.click(inference, inputs=inputs, outputs=outputs)
|
309 |
+
|
310 |
+
gr.HTML(
|
311 |
+
"""
|
312 |
+
<div style="border-top: 1px solid #303030;">
|
313 |
+
<br>
|
314 |
+
<p>Models by <a href="https://huggingface.co/darkstorm2150">@darkstorm2150</a> and others. ❤️</p>
|
315 |
+
<p>This space uses the <a href="https://github.com/LuChengTHU/dpm-solver">DPM-Solver++</a> sampler by <a href="https://arxiv.org/abs/2206.00927">Cheng Lu, et al.</a>.</p>
|
316 |
+
<p>Space by: Darkstorm (Victor Espinoza)<br>
|
317 |
+
<a href="https://www.instagram.com/officialvictorespinoza/">Instagram</a>
|
318 |
+
</div>
|
319 |
+
"""
|
320 |
+
)
|
321 |
+
|
322 |
+
print(f"Space built in {time.time() - start_time:.2f} seconds")
|
323 |
+
|
324 |
+
demo.queue(concurrency_count=1)
|
325 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
git+https://github.com/huggingface/diffusers.git
|
3 |
+
git+https://github.com/huggingface/transformers
|
4 |
+
scipy
|
5 |
+
ftfy
|
6 |
+
psutil
|
7 |
+
accelerate==0.12.0
|