import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from functools import partial from models.config import Config config = Config() class BasicLatBlk(nn.Module): def __init__(self, in_channels=64, out_channels=64, inter_channels=64): super(BasicLatBlk, self).__init__() inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64 self.conv = nn.Conv2d(in_channels, out_channels, 1, 1, 0) def forward(self, x): x = self.conv(x) return x