dibahadie commited on
Commit
6b9fa54
1 Parent(s): 681cbb8

Upload 33 files

Browse files
models/__pycache__/birefnet.cpython-311.pyc ADDED
Binary file (24.2 kB). View file
 
models/__pycache__/config.cpython-311.pyc ADDED
Binary file (9.59 kB). View file
 
models/__pycache__/dataset.cpython-311.pyc ADDED
Binary file (11 kB). View file
 
models/__pycache__/image_proc.cpython-311.pyc ADDED
Binary file (7.68 kB). View file
 
models/backbones/__pycache__/build_backbone.cpython-311.pyc ADDED
Binary file (5.17 kB). View file
 
models/backbones/__pycache__/pvt_v2.cpython-311.pyc ADDED
Binary file (31.8 kB). View file
 
models/backbones/__pycache__/swin_v1.cpython-311.pyc ADDED
Binary file (34.4 kB). View file
 
models/backbones/build_backbone.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from collections import OrderedDict
4
+ from torchvision.models import vgg16, vgg16_bn, VGG16_Weights, VGG16_BN_Weights, resnet50, ResNet50_Weights
5
+ from models.backbones.pvt_v2 import pvt_v2_b0, pvt_v2_b1, pvt_v2_b2, pvt_v2_b5
6
+ from models.backbones.swin_v1 import swin_v1_t, swin_v1_s, swin_v1_b, swin_v1_l
7
+ from models.config import Config
8
+
9
+
10
+ config = Config()
11
+
12
+ def build_backbone(bb_name, pretrained=True, params_settings=''):
13
+ if bb_name == 'vgg16':
14
+ bb_net = list(vgg16(pretrained=VGG16_Weights.DEFAULT if pretrained else None).children())[0]
15
+ bb = nn.Sequential(OrderedDict({'conv1': bb_net[:4], 'conv2': bb_net[4:9], 'conv3': bb_net[9:16], 'conv4': bb_net[16:23]}))
16
+ elif bb_name == 'vgg16bn':
17
+ bb_net = list(vgg16_bn(pretrained=VGG16_BN_Weights.DEFAULT if pretrained else None).children())[0]
18
+ bb = nn.Sequential(OrderedDict({'conv1': bb_net[:6], 'conv2': bb_net[6:13], 'conv3': bb_net[13:23], 'conv4': bb_net[23:33]}))
19
+ elif bb_name == 'resnet50':
20
+ bb_net = list(resnet50(pretrained=ResNet50_Weights.DEFAULT if pretrained else None).children())
21
+ bb = nn.Sequential(OrderedDict({'conv1': nn.Sequential(*bb_net[0:3]), 'conv2': bb_net[4], 'conv3': bb_net[5], 'conv4': bb_net[6]}))
22
+ else:
23
+ bb = eval('{}({})'.format(bb_name, params_settings))
24
+ if pretrained:
25
+ bb = load_weights(bb, bb_name)
26
+ return bb
27
+
28
+ def load_weights(model, model_name):
29
+ save_model = torch.load(config.weights[model_name], map_location='cpu')
30
+ model_dict = model.state_dict()
31
+ state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model.items() if k in model_dict.keys()}
32
+ # to ignore the weights with mismatched size when I modify the backbone itself.
33
+ if not state_dict:
34
+ save_model_keys = list(save_model.keys())
35
+ sub_item = save_model_keys[0] if len(save_model_keys) == 1 else None
36
+ state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model[sub_item].items() if k in model_dict.keys()}
37
+ if not state_dict or not sub_item:
38
+ print('Weights are not successully loaded. Check the state dict of weights file.')
39
+ return None
40
+ else:
41
+ print('Found correct weights in the "{}" item of loaded state_dict.'.format(sub_item))
42
+ model_dict.update(state_dict)
43
+ model.load_state_dict(model_dict)
44
+ return model
models/backbones/pvt_v2.py ADDED
@@ -0,0 +1,435 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from functools import partial
4
+
5
+ from timm.models.layers import DropPath, to_2tuple, trunc_normal_
6
+ from timm.models.registry import register_model
7
+
8
+ import math
9
+
10
+ from models.config import Config
11
+
12
+ config = Config()
13
+
14
+ class Mlp(nn.Module):
15
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
16
+ super().__init__()
17
+ out_features = out_features or in_features
18
+ hidden_features = hidden_features or in_features
19
+ self.fc1 = nn.Linear(in_features, hidden_features)
20
+ self.dwconv = DWConv(hidden_features)
21
+ self.act = act_layer()
22
+ self.fc2 = nn.Linear(hidden_features, out_features)
23
+ self.drop = nn.Dropout(drop)
24
+
25
+ self.apply(self._init_weights)
26
+
27
+ def _init_weights(self, m):
28
+ if isinstance(m, nn.Linear):
29
+ trunc_normal_(m.weight, std=.02)
30
+ if isinstance(m, nn.Linear) and m.bias is not None:
31
+ nn.init.constant_(m.bias, 0)
32
+ elif isinstance(m, nn.LayerNorm):
33
+ nn.init.constant_(m.bias, 0)
34
+ nn.init.constant_(m.weight, 1.0)
35
+ elif isinstance(m, nn.Conv2d):
36
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
37
+ fan_out //= m.groups
38
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
39
+ if m.bias is not None:
40
+ m.bias.data.zero_()
41
+
42
+ def forward(self, x, H, W):
43
+ x = self.fc1(x)
44
+ x = self.dwconv(x, H, W)
45
+ x = self.act(x)
46
+ x = self.drop(x)
47
+ x = self.fc2(x)
48
+ x = self.drop(x)
49
+ return x
50
+
51
+
52
+ class Attention(nn.Module):
53
+ def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
54
+ super().__init__()
55
+ assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
56
+
57
+ self.dim = dim
58
+ self.num_heads = num_heads
59
+ head_dim = dim // num_heads
60
+ self.scale = qk_scale or head_dim ** -0.5
61
+
62
+ self.q = nn.Linear(dim, dim, bias=qkv_bias)
63
+ self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
64
+ self.attn_drop_prob = attn_drop
65
+ self.attn_drop = nn.Dropout(attn_drop)
66
+ self.proj = nn.Linear(dim, dim)
67
+ self.proj_drop = nn.Dropout(proj_drop)
68
+
69
+ self.sr_ratio = sr_ratio
70
+ if sr_ratio > 1:
71
+ self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
72
+ self.norm = nn.LayerNorm(dim)
73
+
74
+ self.apply(self._init_weights)
75
+
76
+ def _init_weights(self, m):
77
+ if isinstance(m, nn.Linear):
78
+ trunc_normal_(m.weight, std=.02)
79
+ if isinstance(m, nn.Linear) and m.bias is not None:
80
+ nn.init.constant_(m.bias, 0)
81
+ elif isinstance(m, nn.LayerNorm):
82
+ nn.init.constant_(m.bias, 0)
83
+ nn.init.constant_(m.weight, 1.0)
84
+ elif isinstance(m, nn.Conv2d):
85
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
86
+ fan_out //= m.groups
87
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
88
+ if m.bias is not None:
89
+ m.bias.data.zero_()
90
+
91
+ def forward(self, x, H, W):
92
+ B, N, C = x.shape
93
+ q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
94
+
95
+ if self.sr_ratio > 1:
96
+ x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
97
+ x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
98
+ x_ = self.norm(x_)
99
+ kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
100
+ else:
101
+ kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
102
+ k, v = kv[0], kv[1]
103
+
104
+ if config.SDPA_enabled:
105
+ x = torch.nn.functional.scaled_dot_product_attention(
106
+ q, k, v,
107
+ attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False
108
+ ).transpose(1, 2).reshape(B, N, C)
109
+ else:
110
+ attn = (q @ k.transpose(-2, -1)) * self.scale
111
+ attn = attn.softmax(dim=-1)
112
+ attn = self.attn_drop(attn)
113
+
114
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
115
+ x = self.proj(x)
116
+ x = self.proj_drop(x)
117
+
118
+ return x
119
+
120
+
121
+ class Block(nn.Module):
122
+
123
+ def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
124
+ drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
125
+ super().__init__()
126
+ self.norm1 = norm_layer(dim)
127
+ self.attn = Attention(
128
+ dim,
129
+ num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
130
+ attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
131
+ # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
132
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
133
+ self.norm2 = norm_layer(dim)
134
+ mlp_hidden_dim = int(dim * mlp_ratio)
135
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
136
+
137
+ self.apply(self._init_weights)
138
+
139
+ def _init_weights(self, m):
140
+ if isinstance(m, nn.Linear):
141
+ trunc_normal_(m.weight, std=.02)
142
+ if isinstance(m, nn.Linear) and m.bias is not None:
143
+ nn.init.constant_(m.bias, 0)
144
+ elif isinstance(m, nn.LayerNorm):
145
+ nn.init.constant_(m.bias, 0)
146
+ nn.init.constant_(m.weight, 1.0)
147
+ elif isinstance(m, nn.Conv2d):
148
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
149
+ fan_out //= m.groups
150
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
151
+ if m.bias is not None:
152
+ m.bias.data.zero_()
153
+
154
+ def forward(self, x, H, W):
155
+ x = x + self.drop_path(self.attn(self.norm1(x), H, W))
156
+ x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
157
+
158
+ return x
159
+
160
+
161
+ class OverlapPatchEmbed(nn.Module):
162
+ """ Image to Patch Embedding
163
+ """
164
+
165
+ def __init__(self, img_size=224, patch_size=7, stride=4, in_channels=3, embed_dim=768):
166
+ super().__init__()
167
+ img_size = to_2tuple(img_size)
168
+ patch_size = to_2tuple(patch_size)
169
+
170
+ self.img_size = img_size
171
+ self.patch_size = patch_size
172
+ self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
173
+ self.num_patches = self.H * self.W
174
+ self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=stride,
175
+ padding=(patch_size[0] // 2, patch_size[1] // 2))
176
+ self.norm = nn.LayerNorm(embed_dim)
177
+
178
+ self.apply(self._init_weights)
179
+
180
+ def _init_weights(self, m):
181
+ if isinstance(m, nn.Linear):
182
+ trunc_normal_(m.weight, std=.02)
183
+ if isinstance(m, nn.Linear) and m.bias is not None:
184
+ nn.init.constant_(m.bias, 0)
185
+ elif isinstance(m, nn.LayerNorm):
186
+ nn.init.constant_(m.bias, 0)
187
+ nn.init.constant_(m.weight, 1.0)
188
+ elif isinstance(m, nn.Conv2d):
189
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
190
+ fan_out //= m.groups
191
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
192
+ if m.bias is not None:
193
+ m.bias.data.zero_()
194
+
195
+ def forward(self, x):
196
+ x = self.proj(x)
197
+ _, _, H, W = x.shape
198
+ x = x.flatten(2).transpose(1, 2)
199
+ x = self.norm(x)
200
+
201
+ return x, H, W
202
+
203
+
204
+ class PyramidVisionTransformerImpr(nn.Module):
205
+ def __init__(self, img_size=224, patch_size=16, in_channels=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
206
+ num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
207
+ attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
208
+ depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]):
209
+ super().__init__()
210
+ self.num_classes = num_classes
211
+ self.depths = depths
212
+
213
+ # patch_embed
214
+ self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_channels=in_channels,
215
+ embed_dim=embed_dims[0])
216
+ self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_channels=embed_dims[0],
217
+ embed_dim=embed_dims[1])
218
+ self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_channels=embed_dims[1],
219
+ embed_dim=embed_dims[2])
220
+ self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_channels=embed_dims[2],
221
+ embed_dim=embed_dims[3])
222
+
223
+ # transformer encoder
224
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
225
+ cur = 0
226
+ self.block1 = nn.ModuleList([Block(
227
+ dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
228
+ drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
229
+ sr_ratio=sr_ratios[0])
230
+ for i in range(depths[0])])
231
+ self.norm1 = norm_layer(embed_dims[0])
232
+
233
+ cur += depths[0]
234
+ self.block2 = nn.ModuleList([Block(
235
+ dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
236
+ drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
237
+ sr_ratio=sr_ratios[1])
238
+ for i in range(depths[1])])
239
+ self.norm2 = norm_layer(embed_dims[1])
240
+
241
+ cur += depths[1]
242
+ self.block3 = nn.ModuleList([Block(
243
+ dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
244
+ drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
245
+ sr_ratio=sr_ratios[2])
246
+ for i in range(depths[2])])
247
+ self.norm3 = norm_layer(embed_dims[2])
248
+
249
+ cur += depths[2]
250
+ self.block4 = nn.ModuleList([Block(
251
+ dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
252
+ drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
253
+ sr_ratio=sr_ratios[3])
254
+ for i in range(depths[3])])
255
+ self.norm4 = norm_layer(embed_dims[3])
256
+
257
+ # classification head
258
+ # self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
259
+
260
+ self.apply(self._init_weights)
261
+
262
+ def _init_weights(self, m):
263
+ if isinstance(m, nn.Linear):
264
+ trunc_normal_(m.weight, std=.02)
265
+ if isinstance(m, nn.Linear) and m.bias is not None:
266
+ nn.init.constant_(m.bias, 0)
267
+ elif isinstance(m, nn.LayerNorm):
268
+ nn.init.constant_(m.bias, 0)
269
+ nn.init.constant_(m.weight, 1.0)
270
+ elif isinstance(m, nn.Conv2d):
271
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
272
+ fan_out //= m.groups
273
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
274
+ if m.bias is not None:
275
+ m.bias.data.zero_()
276
+
277
+ def init_weights(self, pretrained=None):
278
+ if isinstance(pretrained, str):
279
+ logger = 1
280
+ #load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger)
281
+
282
+ def reset_drop_path(self, drop_path_rate):
283
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
284
+ cur = 0
285
+ for i in range(self.depths[0]):
286
+ self.block1[i].drop_path.drop_prob = dpr[cur + i]
287
+
288
+ cur += self.depths[0]
289
+ for i in range(self.depths[1]):
290
+ self.block2[i].drop_path.drop_prob = dpr[cur + i]
291
+
292
+ cur += self.depths[1]
293
+ for i in range(self.depths[2]):
294
+ self.block3[i].drop_path.drop_prob = dpr[cur + i]
295
+
296
+ cur += self.depths[2]
297
+ for i in range(self.depths[3]):
298
+ self.block4[i].drop_path.drop_prob = dpr[cur + i]
299
+
300
+ def freeze_patch_emb(self):
301
+ self.patch_embed1.requires_grad = False
302
+
303
+ @torch.jit.ignore
304
+ def no_weight_decay(self):
305
+ return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'} # has pos_embed may be better
306
+
307
+ def get_classifier(self):
308
+ return self.head
309
+
310
+ def reset_classifier(self, num_classes, global_pool=''):
311
+ self.num_classes = num_classes
312
+ self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
313
+
314
+ def forward_features(self, x):
315
+ B = x.shape[0]
316
+ outs = []
317
+
318
+ # stage 1
319
+ x, H, W = self.patch_embed1(x)
320
+ for i, blk in enumerate(self.block1):
321
+ x = blk(x, H, W)
322
+ x = self.norm1(x)
323
+ x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
324
+ outs.append(x)
325
+
326
+ # stage 2
327
+ x, H, W = self.patch_embed2(x)
328
+ for i, blk in enumerate(self.block2):
329
+ x = blk(x, H, W)
330
+ x = self.norm2(x)
331
+ x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
332
+ outs.append(x)
333
+
334
+ # stage 3
335
+ x, H, W = self.patch_embed3(x)
336
+ for i, blk in enumerate(self.block3):
337
+ x = blk(x, H, W)
338
+ x = self.norm3(x)
339
+ x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
340
+ outs.append(x)
341
+
342
+ # stage 4
343
+ x, H, W = self.patch_embed4(x)
344
+ for i, blk in enumerate(self.block4):
345
+ x = blk(x, H, W)
346
+ x = self.norm4(x)
347
+ x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
348
+ outs.append(x)
349
+
350
+ return outs
351
+
352
+ # return x.mean(dim=1)
353
+
354
+ def forward(self, x):
355
+ x = self.forward_features(x)
356
+ # x = self.head(x)
357
+
358
+ return x
359
+
360
+
361
+ class DWConv(nn.Module):
362
+ def __init__(self, dim=768):
363
+ super(DWConv, self).__init__()
364
+ self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
365
+
366
+ def forward(self, x, H, W):
367
+ B, N, C = x.shape
368
+ x = x.transpose(1, 2).view(B, C, H, W).contiguous()
369
+ x = self.dwconv(x)
370
+ x = x.flatten(2).transpose(1, 2)
371
+
372
+ return x
373
+
374
+
375
+ def _conv_filter(state_dict, patch_size=16):
376
+ """ convert patch embedding weight from manual patchify + linear proj to conv"""
377
+ out_dict = {}
378
+ for k, v in state_dict.items():
379
+ if 'patch_embed.proj.weight' in k:
380
+ v = v.reshape((v.shape[0], 3, patch_size, patch_size))
381
+ out_dict[k] = v
382
+
383
+ return out_dict
384
+
385
+
386
+ ## @register_model
387
+ class pvt_v2_b0(PyramidVisionTransformerImpr):
388
+ def __init__(self, **kwargs):
389
+ super(pvt_v2_b0, self).__init__(
390
+ patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
391
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
392
+ drop_rate=0.0, drop_path_rate=0.1)
393
+
394
+
395
+
396
+ ## @register_model
397
+ class pvt_v2_b1(PyramidVisionTransformerImpr):
398
+ def __init__(self, **kwargs):
399
+ super(pvt_v2_b1, self).__init__(
400
+ patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
401
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
402
+ drop_rate=0.0, drop_path_rate=0.1)
403
+
404
+ ## @register_model
405
+ class pvt_v2_b2(PyramidVisionTransformerImpr):
406
+ def __init__(self, in_channels=3, **kwargs):
407
+ super(pvt_v2_b2, self).__init__(
408
+ patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
409
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],
410
+ drop_rate=0.0, drop_path_rate=0.1, in_channels=in_channels)
411
+
412
+ ## @register_model
413
+ class pvt_v2_b3(PyramidVisionTransformerImpr):
414
+ def __init__(self, **kwargs):
415
+ super(pvt_v2_b3, self).__init__(
416
+ patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
417
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
418
+ drop_rate=0.0, drop_path_rate=0.1)
419
+
420
+ ## @register_model
421
+ class pvt_v2_b4(PyramidVisionTransformerImpr):
422
+ def __init__(self, **kwargs):
423
+ super(pvt_v2_b4, self).__init__(
424
+ patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
425
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
426
+ drop_rate=0.0, drop_path_rate=0.1)
427
+
428
+
429
+ ## @register_model
430
+ class pvt_v2_b5(PyramidVisionTransformerImpr):
431
+ def __init__(self, **kwargs):
432
+ super(pvt_v2_b5, self).__init__(
433
+ patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
434
+ qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],
435
+ drop_rate=0.0, drop_path_rate=0.1)
models/backbones/swin_v1.py ADDED
@@ -0,0 +1,627 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # Swin Transformer
3
+ # Copyright (c) 2021 Microsoft
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # Written by Ze Liu, Yutong Lin, Yixuan Wei
6
+ # --------------------------------------------------------
7
+
8
+ import torch
9
+ import torch.nn as nn
10
+ import torch.nn.functional as F
11
+ import torch.utils.checkpoint as checkpoint
12
+ import numpy as np
13
+ from timm.models.layers import DropPath, to_2tuple, trunc_normal_
14
+
15
+ from models.config import Config
16
+
17
+
18
+ config = Config()
19
+
20
+ class Mlp(nn.Module):
21
+ """ Multilayer perceptron."""
22
+
23
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
24
+ super().__init__()
25
+ out_features = out_features or in_features
26
+ hidden_features = hidden_features or in_features
27
+ self.fc1 = nn.Linear(in_features, hidden_features)
28
+ self.act = act_layer()
29
+ self.fc2 = nn.Linear(hidden_features, out_features)
30
+ self.drop = nn.Dropout(drop)
31
+
32
+ def forward(self, x):
33
+ x = self.fc1(x)
34
+ x = self.act(x)
35
+ x = self.drop(x)
36
+ x = self.fc2(x)
37
+ x = self.drop(x)
38
+ return x
39
+
40
+
41
+ def window_partition(x, window_size):
42
+ """
43
+ Args:
44
+ x: (B, H, W, C)
45
+ window_size (int): window size
46
+
47
+ Returns:
48
+ windows: (num_windows*B, window_size, window_size, C)
49
+ """
50
+ B, H, W, C = x.shape
51
+ x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
52
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
53
+ return windows
54
+
55
+
56
+ def window_reverse(windows, window_size, H, W):
57
+ """
58
+ Args:
59
+ windows: (num_windows*B, window_size, window_size, C)
60
+ window_size (int): Window size
61
+ H (int): Height of image
62
+ W (int): Width of image
63
+
64
+ Returns:
65
+ x: (B, H, W, C)
66
+ """
67
+ B = int(windows.shape[0] / (H * W / window_size / window_size))
68
+ x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
69
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
70
+ return x
71
+
72
+
73
+ class WindowAttention(nn.Module):
74
+ """ Window based multi-head self attention (W-MSA) module with relative position bias.
75
+ It supports both of shifted and non-shifted window.
76
+
77
+ Args:
78
+ dim (int): Number of input channels.
79
+ window_size (tuple[int]): The height and width of the window.
80
+ num_heads (int): Number of attention heads.
81
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
82
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
83
+ attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
84
+ proj_drop (float, optional): Dropout ratio of output. Default: 0.0
85
+ """
86
+
87
+ def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
88
+
89
+ super().__init__()
90
+ self.dim = dim
91
+ self.window_size = window_size # Wh, Ww
92
+ self.num_heads = num_heads
93
+ head_dim = dim // num_heads
94
+ self.scale = qk_scale or head_dim ** -0.5
95
+
96
+ # define a parameter table of relative position bias
97
+ self.relative_position_bias_table = nn.Parameter(
98
+ torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
99
+
100
+ # get pair-wise relative position index for each token inside the window
101
+ coords_h = torch.arange(self.window_size[0])
102
+ coords_w = torch.arange(self.window_size[1])
103
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing='ij')) # 2, Wh, Ww
104
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
105
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
106
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
107
+ relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
108
+ relative_coords[:, :, 1] += self.window_size[1] - 1
109
+ relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
110
+ relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
111
+ self.register_buffer("relative_position_index", relative_position_index)
112
+
113
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
114
+ self.attn_drop_prob = attn_drop
115
+ self.attn_drop = nn.Dropout(attn_drop)
116
+ self.proj = nn.Linear(dim, dim)
117
+ self.proj_drop = nn.Dropout(proj_drop)
118
+
119
+ trunc_normal_(self.relative_position_bias_table, std=.02)
120
+ self.softmax = nn.Softmax(dim=-1)
121
+
122
+ def forward(self, x, mask=None):
123
+ """ Forward function.
124
+
125
+ Args:
126
+ x: input features with shape of (num_windows*B, N, C)
127
+ mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
128
+ """
129
+ B_, N, C = x.shape
130
+ qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
131
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
132
+
133
+ q = q * self.scale
134
+
135
+ if config.SDPA_enabled:
136
+ x = torch.nn.functional.scaled_dot_product_attention(
137
+ q, k, v,
138
+ attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False
139
+ ).transpose(1, 2).reshape(B_, N, C)
140
+ else:
141
+ attn = (q @ k.transpose(-2, -1))
142
+
143
+ relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
144
+ self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
145
+ relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
146
+ attn = attn + relative_position_bias.unsqueeze(0)
147
+
148
+ if mask is not None:
149
+ nW = mask.shape[0]
150
+ attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
151
+ attn = attn.view(-1, self.num_heads, N, N)
152
+ attn = self.softmax(attn)
153
+ else:
154
+ attn = self.softmax(attn)
155
+
156
+ attn = self.attn_drop(attn)
157
+
158
+ x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
159
+ x = self.proj(x)
160
+ x = self.proj_drop(x)
161
+ return x
162
+
163
+
164
+ class SwinTransformerBlock(nn.Module):
165
+ """ Swin Transformer Block.
166
+
167
+ Args:
168
+ dim (int): Number of input channels.
169
+ num_heads (int): Number of attention heads.
170
+ window_size (int): Window size.
171
+ shift_size (int): Shift size for SW-MSA.
172
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
173
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
174
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
175
+ drop (float, optional): Dropout rate. Default: 0.0
176
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
177
+ drop_path (float, optional): Stochastic depth rate. Default: 0.0
178
+ act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
179
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
180
+ """
181
+
182
+ def __init__(self, dim, num_heads, window_size=7, shift_size=0,
183
+ mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
184
+ act_layer=nn.GELU, norm_layer=nn.LayerNorm):
185
+ super().__init__()
186
+ self.dim = dim
187
+ self.num_heads = num_heads
188
+ self.window_size = window_size
189
+ self.shift_size = shift_size
190
+ self.mlp_ratio = mlp_ratio
191
+ assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
192
+
193
+ self.norm1 = norm_layer(dim)
194
+ self.attn = WindowAttention(
195
+ dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
196
+ qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
197
+
198
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
199
+ self.norm2 = norm_layer(dim)
200
+ mlp_hidden_dim = int(dim * mlp_ratio)
201
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
202
+
203
+ self.H = None
204
+ self.W = None
205
+
206
+ def forward(self, x, mask_matrix):
207
+ """ Forward function.
208
+
209
+ Args:
210
+ x: Input feature, tensor size (B, H*W, C).
211
+ H, W: Spatial resolution of the input feature.
212
+ mask_matrix: Attention mask for cyclic shift.
213
+ """
214
+ B, L, C = x.shape
215
+ H, W = self.H, self.W
216
+ assert L == H * W, "input feature has wrong size"
217
+
218
+ shortcut = x
219
+ x = self.norm1(x)
220
+ x = x.view(B, H, W, C)
221
+
222
+ # pad feature maps to multiples of window size
223
+ pad_l = pad_t = 0
224
+ pad_r = (self.window_size - W % self.window_size) % self.window_size
225
+ pad_b = (self.window_size - H % self.window_size) % self.window_size
226
+ x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
227
+ _, Hp, Wp, _ = x.shape
228
+
229
+ # cyclic shift
230
+ if self.shift_size > 0:
231
+ shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
232
+ attn_mask = mask_matrix
233
+ else:
234
+ shifted_x = x
235
+ attn_mask = None
236
+
237
+ # partition windows
238
+ x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
239
+ x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
240
+
241
+ # W-MSA/SW-MSA
242
+ attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
243
+
244
+ # merge windows
245
+ attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
246
+ shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
247
+
248
+ # reverse cyclic shift
249
+ if self.shift_size > 0:
250
+ x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
251
+ else:
252
+ x = shifted_x
253
+
254
+ if pad_r > 0 or pad_b > 0:
255
+ x = x[:, :H, :W, :].contiguous()
256
+
257
+ x = x.view(B, H * W, C)
258
+
259
+ # FFN
260
+ x = shortcut + self.drop_path(x)
261
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
262
+
263
+ return x
264
+
265
+
266
+ class PatchMerging(nn.Module):
267
+ """ Patch Merging Layer
268
+
269
+ Args:
270
+ dim (int): Number of input channels.
271
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
272
+ """
273
+ def __init__(self, dim, norm_layer=nn.LayerNorm):
274
+ super().__init__()
275
+ self.dim = dim
276
+ self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
277
+ self.norm = norm_layer(4 * dim)
278
+
279
+ def forward(self, x, H, W):
280
+ """ Forward function.
281
+
282
+ Args:
283
+ x: Input feature, tensor size (B, H*W, C).
284
+ H, W: Spatial resolution of the input feature.
285
+ """
286
+ B, L, C = x.shape
287
+ assert L == H * W, "input feature has wrong size"
288
+
289
+ x = x.view(B, H, W, C)
290
+
291
+ # padding
292
+ pad_input = (H % 2 == 1) or (W % 2 == 1)
293
+ if pad_input:
294
+ x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
295
+
296
+ x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
297
+ x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
298
+ x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
299
+ x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
300
+ x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
301
+ x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
302
+
303
+ x = self.norm(x)
304
+ x = self.reduction(x)
305
+
306
+ return x
307
+
308
+
309
+ class BasicLayer(nn.Module):
310
+ """ A basic Swin Transformer layer for one stage.
311
+
312
+ Args:
313
+ dim (int): Number of feature channels
314
+ depth (int): Depths of this stage.
315
+ num_heads (int): Number of attention head.
316
+ window_size (int): Local window size. Default: 7.
317
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
318
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
319
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
320
+ drop (float, optional): Dropout rate. Default: 0.0
321
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
322
+ drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
323
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
324
+ downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
325
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
326
+ """
327
+
328
+ def __init__(self,
329
+ dim,
330
+ depth,
331
+ num_heads,
332
+ window_size=7,
333
+ mlp_ratio=4.,
334
+ qkv_bias=True,
335
+ qk_scale=None,
336
+ drop=0.,
337
+ attn_drop=0.,
338
+ drop_path=0.,
339
+ norm_layer=nn.LayerNorm,
340
+ downsample=None,
341
+ use_checkpoint=False):
342
+ super().__init__()
343
+ self.window_size = window_size
344
+ self.shift_size = window_size // 2
345
+ self.depth = depth
346
+ self.use_checkpoint = use_checkpoint
347
+
348
+ # build blocks
349
+ self.blocks = nn.ModuleList([
350
+ SwinTransformerBlock(
351
+ dim=dim,
352
+ num_heads=num_heads,
353
+ window_size=window_size,
354
+ shift_size=0 if (i % 2 == 0) else window_size // 2,
355
+ mlp_ratio=mlp_ratio,
356
+ qkv_bias=qkv_bias,
357
+ qk_scale=qk_scale,
358
+ drop=drop,
359
+ attn_drop=attn_drop,
360
+ drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
361
+ norm_layer=norm_layer)
362
+ for i in range(depth)])
363
+
364
+ # patch merging layer
365
+ if downsample is not None:
366
+ self.downsample = downsample(dim=dim, norm_layer=norm_layer)
367
+ else:
368
+ self.downsample = None
369
+
370
+ def forward(self, x, H, W):
371
+ """ Forward function.
372
+
373
+ Args:
374
+ x: Input feature, tensor size (B, H*W, C).
375
+ H, W: Spatial resolution of the input feature.
376
+ """
377
+
378
+ # calculate attention mask for SW-MSA
379
+ Hp = int(np.ceil(H / self.window_size)) * self.window_size
380
+ Wp = int(np.ceil(W / self.window_size)) * self.window_size
381
+ img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
382
+ h_slices = (slice(0, -self.window_size),
383
+ slice(-self.window_size, -self.shift_size),
384
+ slice(-self.shift_size, None))
385
+ w_slices = (slice(0, -self.window_size),
386
+ slice(-self.window_size, -self.shift_size),
387
+ slice(-self.shift_size, None))
388
+ cnt = 0
389
+ for h in h_slices:
390
+ for w in w_slices:
391
+ img_mask[:, h, w, :] = cnt
392
+ cnt += 1
393
+
394
+ mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
395
+ mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
396
+ attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
397
+ attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
398
+
399
+ for blk in self.blocks:
400
+ blk.H, blk.W = H, W
401
+ if self.use_checkpoint:
402
+ x = checkpoint.checkpoint(blk, x, attn_mask)
403
+ else:
404
+ x = blk(x, attn_mask)
405
+ if self.downsample is not None:
406
+ x_down = self.downsample(x, H, W)
407
+ Wh, Ww = (H + 1) // 2, (W + 1) // 2
408
+ return x, H, W, x_down, Wh, Ww
409
+ else:
410
+ return x, H, W, x, H, W
411
+
412
+
413
+ class PatchEmbed(nn.Module):
414
+ """ Image to Patch Embedding
415
+
416
+ Args:
417
+ patch_size (int): Patch token size. Default: 4.
418
+ in_channels (int): Number of input image channels. Default: 3.
419
+ embed_dim (int): Number of linear projection output channels. Default: 96.
420
+ norm_layer (nn.Module, optional): Normalization layer. Default: None
421
+ """
422
+
423
+ def __init__(self, patch_size=4, in_channels=3, embed_dim=96, norm_layer=None):
424
+ super().__init__()
425
+ patch_size = to_2tuple(patch_size)
426
+ self.patch_size = patch_size
427
+
428
+ self.in_channels = in_channels
429
+ self.embed_dim = embed_dim
430
+
431
+ self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
432
+ if norm_layer is not None:
433
+ self.norm = norm_layer(embed_dim)
434
+ else:
435
+ self.norm = None
436
+
437
+ def forward(self, x):
438
+ """Forward function."""
439
+ # padding
440
+ _, _, H, W = x.size()
441
+ if W % self.patch_size[1] != 0:
442
+ x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
443
+ if H % self.patch_size[0] != 0:
444
+ x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
445
+
446
+ x = self.proj(x) # B C Wh Ww
447
+ if self.norm is not None:
448
+ Wh, Ww = x.size(2), x.size(3)
449
+ x = x.flatten(2).transpose(1, 2)
450
+ x = self.norm(x)
451
+ x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
452
+
453
+ return x
454
+
455
+
456
+ class SwinTransformer(nn.Module):
457
+ """ Swin Transformer backbone.
458
+ A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
459
+ https://arxiv.org/pdf/2103.14030
460
+
461
+ Args:
462
+ pretrain_img_size (int): Input image size for training the pretrained model,
463
+ used in absolute postion embedding. Default 224.
464
+ patch_size (int | tuple(int)): Patch size. Default: 4.
465
+ in_channels (int): Number of input image channels. Default: 3.
466
+ embed_dim (int): Number of linear projection output channels. Default: 96.
467
+ depths (tuple[int]): Depths of each Swin Transformer stage.
468
+ num_heads (tuple[int]): Number of attention head of each stage.
469
+ window_size (int): Window size. Default: 7.
470
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
471
+ qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
472
+ qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
473
+ drop_rate (float): Dropout rate.
474
+ attn_drop_rate (float): Attention dropout rate. Default: 0.
475
+ drop_path_rate (float): Stochastic depth rate. Default: 0.2.
476
+ norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
477
+ ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
478
+ patch_norm (bool): If True, add normalization after patch embedding. Default: True.
479
+ out_indices (Sequence[int]): Output from which stages.
480
+ frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
481
+ -1 means not freezing any parameters.
482
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
483
+ """
484
+
485
+ def __init__(self,
486
+ pretrain_img_size=224,
487
+ patch_size=4,
488
+ in_channels=3,
489
+ embed_dim=96,
490
+ depths=[2, 2, 6, 2],
491
+ num_heads=[3, 6, 12, 24],
492
+ window_size=7,
493
+ mlp_ratio=4.,
494
+ qkv_bias=True,
495
+ qk_scale=None,
496
+ drop_rate=0.,
497
+ attn_drop_rate=0.,
498
+ drop_path_rate=0.2,
499
+ norm_layer=nn.LayerNorm,
500
+ ape=False,
501
+ patch_norm=True,
502
+ out_indices=(0, 1, 2, 3),
503
+ frozen_stages=-1,
504
+ use_checkpoint=False):
505
+ super().__init__()
506
+
507
+ self.pretrain_img_size = pretrain_img_size
508
+ self.num_layers = len(depths)
509
+ self.embed_dim = embed_dim
510
+ self.ape = ape
511
+ self.patch_norm = patch_norm
512
+ self.out_indices = out_indices
513
+ self.frozen_stages = frozen_stages
514
+
515
+ # split image into non-overlapping patches
516
+ self.patch_embed = PatchEmbed(
517
+ patch_size=patch_size, in_channels=in_channels, embed_dim=embed_dim,
518
+ norm_layer=norm_layer if self.patch_norm else None)
519
+
520
+ # absolute position embedding
521
+ if self.ape:
522
+ pretrain_img_size = to_2tuple(pretrain_img_size)
523
+ patch_size = to_2tuple(patch_size)
524
+ patches_resolution = [pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1]]
525
+
526
+ self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1]))
527
+ trunc_normal_(self.absolute_pos_embed, std=.02)
528
+
529
+ self.pos_drop = nn.Dropout(p=drop_rate)
530
+
531
+ # stochastic depth
532
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
533
+
534
+ # build layers
535
+ self.layers = nn.ModuleList()
536
+ for i_layer in range(self.num_layers):
537
+ layer = BasicLayer(
538
+ dim=int(embed_dim * 2 ** i_layer),
539
+ depth=depths[i_layer],
540
+ num_heads=num_heads[i_layer],
541
+ window_size=window_size,
542
+ mlp_ratio=mlp_ratio,
543
+ qkv_bias=qkv_bias,
544
+ qk_scale=qk_scale,
545
+ drop=drop_rate,
546
+ attn_drop=attn_drop_rate,
547
+ drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
548
+ norm_layer=norm_layer,
549
+ downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
550
+ use_checkpoint=use_checkpoint)
551
+ self.layers.append(layer)
552
+
553
+ num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
554
+ self.num_features = num_features
555
+
556
+ # add a norm layer for each output
557
+ for i_layer in out_indices:
558
+ layer = norm_layer(num_features[i_layer])
559
+ layer_name = f'norm{i_layer}'
560
+ self.add_module(layer_name, layer)
561
+
562
+ self._freeze_stages()
563
+
564
+ def _freeze_stages(self):
565
+ if self.frozen_stages >= 0:
566
+ self.patch_embed.eval()
567
+ for param in self.patch_embed.parameters():
568
+ param.requires_grad = False
569
+
570
+ if self.frozen_stages >= 1 and self.ape:
571
+ self.absolute_pos_embed.requires_grad = False
572
+
573
+ if self.frozen_stages >= 2:
574
+ self.pos_drop.eval()
575
+ for i in range(0, self.frozen_stages - 1):
576
+ m = self.layers[i]
577
+ m.eval()
578
+ for param in m.parameters():
579
+ param.requires_grad = False
580
+
581
+
582
+ def forward(self, x):
583
+ """Forward function."""
584
+ x = self.patch_embed(x)
585
+
586
+ Wh, Ww = x.size(2), x.size(3)
587
+ if self.ape:
588
+ # interpolate the position embedding to the corresponding size
589
+ absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
590
+ x = (x + absolute_pos_embed) # B Wh*Ww C
591
+
592
+ outs = []#x.contiguous()]
593
+ x = x.flatten(2).transpose(1, 2)
594
+ x = self.pos_drop(x)
595
+ for i in range(self.num_layers):
596
+ layer = self.layers[i]
597
+ x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
598
+
599
+ if i in self.out_indices:
600
+ norm_layer = getattr(self, f'norm{i}')
601
+ x_out = norm_layer(x_out)
602
+
603
+ out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
604
+ outs.append(out)
605
+
606
+ return tuple(outs)
607
+
608
+ def train(self, mode=True):
609
+ """Convert the model into training mode while keep layers freezed."""
610
+ super(SwinTransformer, self).train(mode)
611
+ self._freeze_stages()
612
+
613
+ def swin_v1_t():
614
+ model = SwinTransformer(embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7)
615
+ return model
616
+
617
+ def swin_v1_s():
618
+ model = SwinTransformer(embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=7)
619
+ return model
620
+
621
+ def swin_v1_b():
622
+ model = SwinTransformer(embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12)
623
+ return model
624
+
625
+ def swin_v1_l():
626
+ model = SwinTransformer(embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12)
627
+ return model
models/birefnet.py ADDED
@@ -0,0 +1,286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from kornia.filters import laplacian
5
+ from huggingface_hub import PyTorchModelHubMixin
6
+
7
+ from models.config import Config
8
+ from models.dataset import class_labels_TR_sorted
9
+ from models.backbones.build_backbone import build_backbone
10
+ from models.modules.decoder_blocks import BasicDecBlk, ResBlk
11
+ from models.modules.lateral_blocks import BasicLatBlk
12
+ from models.modules.aspp import ASPP, ASPPDeformable
13
+ from models.refinement.refiner import Refiner, RefinerPVTInChannels4, RefUNet
14
+ from models.refinement.stem_layer import StemLayer
15
+
16
+
17
+ class BiRefNet(
18
+ nn.Module,
19
+ PyTorchModelHubMixin,
20
+ library_name="birefnet",
21
+ repo_url="https://github.com/ZhengPeng7/BiRefNet",
22
+ tags=['Image Segmentation', 'Background Removal', 'Mask Generation', 'Dichotomous Image Segmentation', 'Camouflaged Object Detection', 'Salient Object Detection']
23
+ ):
24
+ def __init__(self, bb_pretrained=True):
25
+ super(BiRefNet, self).__init__()
26
+ self.config = Config()
27
+ self.epoch = 1
28
+ self.bb = build_backbone(self.config.bb, pretrained=bb_pretrained)
29
+
30
+ channels = self.config.lateral_channels_in_collection
31
+
32
+ if self.config.auxiliary_classification:
33
+ self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
34
+ self.cls_head = nn.Sequential(
35
+ nn.Linear(channels[0], len(class_labels_TR_sorted))
36
+ )
37
+
38
+ if self.config.squeeze_block:
39
+ self.squeeze_module = nn.Sequential(*[
40
+ eval(self.config.squeeze_block.split('_x')[0])(channels[0]+sum(self.config.cxt), channels[0])
41
+ for _ in range(eval(self.config.squeeze_block.split('_x')[1]))
42
+ ])
43
+
44
+ self.decoder = Decoder(channels)
45
+
46
+ if self.config.ender:
47
+ self.dec_end = nn.Sequential(
48
+ nn.Conv2d(1, 16, 3, 1, 1),
49
+ nn.Conv2d(16, 1, 3, 1, 1),
50
+ nn.ReLU(inplace=True),
51
+ )
52
+
53
+ # refine patch-level segmentation
54
+ if self.config.refine:
55
+ if self.config.refine == 'itself':
56
+ self.stem_layer = StemLayer(in_channels=3+1, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN')
57
+ else:
58
+ self.refiner = eval('{}({})'.format(self.config.refine, 'in_channels=3+1'))
59
+
60
+ if self.config.freeze_bb:
61
+ # Freeze the backbone...
62
+ print(self.named_parameters())
63
+ for key, value in self.named_parameters():
64
+ if 'bb.' in key and 'refiner.' not in key:
65
+ value.requires_grad = False
66
+
67
+ def forward_enc(self, x):
68
+ if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
69
+ x1 = self.bb.conv1(x); x2 = self.bb.conv2(x1); x3 = self.bb.conv3(x2); x4 = self.bb.conv4(x3)
70
+ else:
71
+ x1, x2, x3, x4 = self.bb(x)
72
+ if self.config.mul_scl_ipt == 'cat':
73
+ B, C, H, W = x.shape
74
+ x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
75
+ x1 = torch.cat([x1, F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)], dim=1)
76
+ x2 = torch.cat([x2, F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)], dim=1)
77
+ x3 = torch.cat([x3, F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)], dim=1)
78
+ x4 = torch.cat([x4, F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)], dim=1)
79
+ elif self.config.mul_scl_ipt == 'add':
80
+ B, C, H, W = x.shape
81
+ x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
82
+ x1 = x1 + F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)
83
+ x2 = x2 + F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)
84
+ x3 = x3 + F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)
85
+ x4 = x4 + F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)
86
+ class_preds = self.cls_head(self.avgpool(x4).view(x4.shape[0], -1)) if self.training and self.config.auxiliary_classification else None
87
+ if self.config.cxt:
88
+ x4 = torch.cat(
89
+ (
90
+ *[
91
+ F.interpolate(x1, size=x4.shape[2:], mode='bilinear', align_corners=True),
92
+ F.interpolate(x2, size=x4.shape[2:], mode='bilinear', align_corners=True),
93
+ F.interpolate(x3, size=x4.shape[2:], mode='bilinear', align_corners=True),
94
+ ][-len(self.config.cxt):],
95
+ x4
96
+ ),
97
+ dim=1
98
+ )
99
+ return (x1, x2, x3, x4), class_preds
100
+
101
+ def forward_ori(self, x):
102
+ ########## Encoder ##########
103
+ (x1, x2, x3, x4), class_preds = self.forward_enc(x)
104
+ if self.config.squeeze_block:
105
+ x4 = self.squeeze_module(x4)
106
+ ########## Decoder ##########
107
+ features = [x, x1, x2, x3, x4]
108
+ if self.training and self.config.out_ref:
109
+ features.append(laplacian(torch.mean(x, dim=1).unsqueeze(1), kernel_size=5))
110
+ scaled_preds = self.decoder(features)
111
+ return scaled_preds, class_preds
112
+
113
+ def forward(self, x):
114
+ scaled_preds, class_preds = self.forward_ori(x)
115
+ class_preds_lst = [class_preds]
116
+ return [scaled_preds, class_preds_lst] if self.training else scaled_preds
117
+
118
+
119
+ class Decoder(nn.Module):
120
+ def __init__(self, channels):
121
+ super(Decoder, self).__init__()
122
+ self.config = Config()
123
+ DecoderBlock = eval(self.config.dec_blk)
124
+ LateralBlock = eval(self.config.lat_blk)
125
+
126
+ if self.config.dec_ipt:
127
+ self.split = self.config.dec_ipt_split
128
+ N_dec_ipt = 64
129
+ DBlock = SimpleConvs
130
+ ic = 64
131
+ ipt_cha_opt = 1
132
+ self.ipt_blk5 = DBlock(2**10*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
133
+ self.ipt_blk4 = DBlock(2**8*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
134
+ self.ipt_blk3 = DBlock(2**6*3 if self.split else 3, [N_dec_ipt, channels[1]//8][ipt_cha_opt], inter_channels=ic)
135
+ self.ipt_blk2 = DBlock(2**4*3 if self.split else 3, [N_dec_ipt, channels[2]//8][ipt_cha_opt], inter_channels=ic)
136
+ self.ipt_blk1 = DBlock(2**0*3 if self.split else 3, [N_dec_ipt, channels[3]//8][ipt_cha_opt], inter_channels=ic)
137
+ else:
138
+ self.split = None
139
+
140
+ self.decoder_block4 = DecoderBlock(channels[0]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[1])
141
+ self.decoder_block3 = DecoderBlock(channels[1]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[2])
142
+ self.decoder_block2 = DecoderBlock(channels[2]+([N_dec_ipt, channels[1]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3])
143
+ self.decoder_block1 = DecoderBlock(channels[3]+([N_dec_ipt, channels[2]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3]//2)
144
+ self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2+([N_dec_ipt, channels[3]//8][ipt_cha_opt] if self.config.dec_ipt else 0), 1, 1, 1, 0))
145
+
146
+ self.lateral_block4 = LateralBlock(channels[1], channels[1])
147
+ self.lateral_block3 = LateralBlock(channels[2], channels[2])
148
+ self.lateral_block2 = LateralBlock(channels[3], channels[3])
149
+
150
+ if self.config.ms_supervision:
151
+ self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
152
+ self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
153
+ self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
154
+
155
+ if self.config.out_ref:
156
+ _N = 16
157
+ self.gdt_convs_4 = nn.Sequential(nn.Conv2d(channels[1], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
158
+ self.gdt_convs_3 = nn.Sequential(nn.Conv2d(channels[2], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
159
+ self.gdt_convs_2 = nn.Sequential(nn.Conv2d(channels[3], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
160
+
161
+ self.gdt_convs_pred_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
162
+ self.gdt_convs_pred_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
163
+ self.gdt_convs_pred_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
164
+
165
+ self.gdt_convs_attn_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
166
+ self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
167
+ self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
168
+
169
+ def get_patches_batch(self, x, p):
170
+ _size_h, _size_w = p.shape[2:]
171
+ patches_batch = []
172
+ for idx in range(x.shape[0]):
173
+ columns_x = torch.split(x[idx], split_size_or_sections=_size_w, dim=-1)
174
+ patches_x = []
175
+ for column_x in columns_x:
176
+ patches_x += [p.unsqueeze(0) for p in torch.split(column_x, split_size_or_sections=_size_h, dim=-2)]
177
+ patch_sample = torch.cat(patches_x, dim=1)
178
+ patches_batch.append(patch_sample)
179
+ return torch.cat(patches_batch, dim=0)
180
+
181
+ def forward(self, features):
182
+ if self.training and self.config.out_ref:
183
+ outs_gdt_pred = []
184
+ outs_gdt_label = []
185
+ x, x1, x2, x3, x4, gdt_gt = features
186
+ else:
187
+ x, x1, x2, x3, x4 = features
188
+ outs = []
189
+
190
+ if self.config.dec_ipt:
191
+ patches_batch = self.get_patches_batch(x, x4) if self.split else x
192
+ x4 = torch.cat((x4, self.ipt_blk5(F.interpolate(patches_batch, size=x4.shape[2:], mode='bilinear', align_corners=True))), 1)
193
+ p4 = self.decoder_block4(x4)
194
+ m4 = self.conv_ms_spvn_4(p4) if self.config.ms_supervision and self.training else None
195
+ if self.config.out_ref:
196
+ p4_gdt = self.gdt_convs_4(p4)
197
+ if self.training:
198
+ # >> GT:
199
+ m4_dia = m4
200
+ gdt_label_main_4 = gdt_gt * F.interpolate(m4_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
201
+ outs_gdt_label.append(gdt_label_main_4)
202
+ # >> Pred:
203
+ gdt_pred_4 = self.gdt_convs_pred_4(p4_gdt)
204
+ outs_gdt_pred.append(gdt_pred_4)
205
+ gdt_attn_4 = self.gdt_convs_attn_4(p4_gdt).sigmoid()
206
+ # >> Finally:
207
+ p4 = p4 * gdt_attn_4
208
+ _p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
209
+ _p3 = _p4 + self.lateral_block4(x3)
210
+
211
+ if self.config.dec_ipt:
212
+ patches_batch = self.get_patches_batch(x, _p3) if self.split else x
213
+ _p3 = torch.cat((_p3, self.ipt_blk4(F.interpolate(patches_batch, size=x3.shape[2:], mode='bilinear', align_corners=True))), 1)
214
+ p3 = self.decoder_block3(_p3)
215
+ m3 = self.conv_ms_spvn_3(p3) if self.config.ms_supervision and self.training else None
216
+ if self.config.out_ref:
217
+ p3_gdt = self.gdt_convs_3(p3)
218
+ if self.training:
219
+ # >> GT:
220
+ # m3 --dilation--> m3_dia
221
+ # G_3^gt * m3_dia --> G_3^m, which is the label of gradient
222
+ m3_dia = m3
223
+ gdt_label_main_3 = gdt_gt * F.interpolate(m3_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
224
+ outs_gdt_label.append(gdt_label_main_3)
225
+ # >> Pred:
226
+ # p3 --conv--BN--> F_3^G, where F_3^G predicts the \hat{G_3} with xx
227
+ # F_3^G --sigmoid--> A_3^G
228
+ gdt_pred_3 = self.gdt_convs_pred_3(p3_gdt)
229
+ outs_gdt_pred.append(gdt_pred_3)
230
+ gdt_attn_3 = self.gdt_convs_attn_3(p3_gdt).sigmoid()
231
+ # >> Finally:
232
+ # p3 = p3 * A_3^G
233
+ p3 = p3 * gdt_attn_3
234
+ _p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
235
+ _p2 = _p3 + self.lateral_block3(x2)
236
+
237
+ if self.config.dec_ipt:
238
+ patches_batch = self.get_patches_batch(x, _p2) if self.split else x
239
+ _p2 = torch.cat((_p2, self.ipt_blk3(F.interpolate(patches_batch, size=x2.shape[2:], mode='bilinear', align_corners=True))), 1)
240
+ p2 = self.decoder_block2(_p2)
241
+ m2 = self.conv_ms_spvn_2(p2) if self.config.ms_supervision and self.training else None
242
+ if self.config.out_ref:
243
+ p2_gdt = self.gdt_convs_2(p2)
244
+ if self.training:
245
+ # >> GT:
246
+ m2_dia = m2
247
+ gdt_label_main_2 = gdt_gt * F.interpolate(m2_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
248
+ outs_gdt_label.append(gdt_label_main_2)
249
+ # >> Pred:
250
+ gdt_pred_2 = self.gdt_convs_pred_2(p2_gdt)
251
+ outs_gdt_pred.append(gdt_pred_2)
252
+ gdt_attn_2 = self.gdt_convs_attn_2(p2_gdt).sigmoid()
253
+ # >> Finally:
254
+ p2 = p2 * gdt_attn_2
255
+ _p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
256
+ _p1 = _p2 + self.lateral_block2(x1)
257
+
258
+ if self.config.dec_ipt:
259
+ patches_batch = self.get_patches_batch(x, _p1) if self.split else x
260
+ _p1 = torch.cat((_p1, self.ipt_blk2(F.interpolate(patches_batch, size=x1.shape[2:], mode='bilinear', align_corners=True))), 1)
261
+ _p1 = self.decoder_block1(_p1)
262
+ _p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
263
+
264
+ if self.config.dec_ipt:
265
+ patches_batch = self.get_patches_batch(x, _p1) if self.split else x
266
+ _p1 = torch.cat((_p1, self.ipt_blk1(F.interpolate(patches_batch, size=x.shape[2:], mode='bilinear', align_corners=True))), 1)
267
+ p1_out = self.conv_out1(_p1)
268
+
269
+ if self.config.ms_supervision and self.training:
270
+ outs.append(m4)
271
+ outs.append(m3)
272
+ outs.append(m2)
273
+ outs.append(p1_out)
274
+ return outs if not (self.config.out_ref and self.training) else ([outs_gdt_pred, outs_gdt_label], outs)
275
+
276
+
277
+ class SimpleConvs(nn.Module):
278
+ def __init__(
279
+ self, in_channels: int, out_channels: int, inter_channels=64
280
+ ) -> None:
281
+ super().__init__()
282
+ self.conv1 = nn.Conv2d(in_channels, inter_channels, 3, 1, 1)
283
+ self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, 1)
284
+
285
+ def forward(self, x):
286
+ return self.conv_out(self.conv1(x))
models/config.py ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import math
3
+
4
+
5
+ class Config():
6
+ def __init__(self) -> None:
7
+ # PATH settings
8
+ # Make up your file system as: SYS_HOME_DIR/codes/dis/BiRefNet, SYS_HOME_DIR/datasets/dis/xx, SYS_HOME_DIR/weights/xx
9
+ if os.name == 'nt':
10
+ self.sys_home_dir = os.environ['USERPROFILE'] # For windows system
11
+ else:
12
+ self.sys_home_dir = [os.environ['HOME'], '/mnt/data'][1] # For Linux system
13
+ self.data_root_dir = os.path.join(self.sys_home_dir, 'datasets/dis')
14
+
15
+ # TASK settings
16
+ self.task = ['DIS5K', 'COD', 'HRSOD', 'General', 'General-2K', 'Matting'][0]
17
+ # self.training_set = {
18
+ # 'DIS5K': ['DIS-TR', 'DIS-TR+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4'][0],
19
+ # 'COD': 'TR-COD10K+TR-CAMO',
20
+ # 'HRSOD': ['TR-DUTS', 'TR-HRSOD', 'TR-UHRSD', 'TR-DUTS+TR-HRSOD', 'TR-DUTS+TR-UHRSD', 'TR-HRSOD+TR-UHRSD', 'TR-DUTS+TR-HRSOD+TR-UHRSD'][5],
21
+ # 'General': '+'.join([ds for ds in os.listdir(os.path.join(self.data_root_dir, self.task)) if ds not in ['DIS-VD']]), # leave DIS-VD for evaluation.
22
+ # 'General-2K': '+'.join([ds for ds in os.listdir(os.path.join(self.data_root_dir, self.task)) if ds not in ['DIS-VD', 'DIS-VD-ori']]),
23
+ # 'Matting': 'TR-P3M-10k+TE-P3M-500-NP+TR-humans+TR-Distrinctions-646',
24
+ # }[self.task]
25
+ self.prompt4loc = ['dense', 'sparse'][0]
26
+
27
+ # Faster-Training settings
28
+ self.load_all = False # Turn it on/off by your case. It may consume a lot of CPU memory. And for multi-GPU (N), it would cost N times the CPU memory to load the data.
29
+ self.use_fp16 = False # It may cause nan in training.
30
+ self.compile = True and (not self.use_fp16) # 1. Trigger CPU memory leak in some extend, which is an inherent problem of PyTorch.
31
+ # Machines with > 70GB CPU memory can run the whole training on DIS5K with default setting.
32
+ # 2. Higher PyTorch version may fix it: https://github.com/pytorch/pytorch/issues/119607.
33
+ # 3. But compile in Pytorch > 2.0.1 seems to bring no acceleration for training.
34
+ self.precisionHigh = True
35
+
36
+ # MODEL settings
37
+ self.ms_supervision = True
38
+ self.out_ref = self.ms_supervision and True
39
+ self.dec_ipt = True
40
+ self.dec_ipt_split = True
41
+ self.cxt_num = [0, 3][1] # multi-scale skip connections from encoder
42
+ self.mul_scl_ipt = ['', 'add', 'cat'][2]
43
+ self.dec_att = ['', 'ASPP', 'ASPPDeformable'][2]
44
+ self.squeeze_block = ['', 'BasicDecBlk_x1', 'ResBlk_x4', 'ASPP_x3', 'ASPPDeformable_x3'][1]
45
+ self.dec_blk = ['BasicDecBlk', 'ResBlk'][0]
46
+
47
+ # TRAINING settings
48
+ self.batch_size = 4
49
+ self.finetune_last_epochs = [
50
+ 0,
51
+ {
52
+ 'DIS5K': -40,
53
+ 'COD': -20,
54
+ 'HRSOD': -20,
55
+ 'General': -20,
56
+ 'General-2K': -20,
57
+ 'Matting': -20,
58
+ }[self.task]
59
+ ][1] # choose 0 to skip
60
+ self.lr = (1e-4 if 'DIS5K' in self.task else 1e-5) * math.sqrt(self.batch_size / 4) # DIS needs high lr to converge faster. Adapt the lr linearly
61
+ self.size = (1024, 1024) if self.task not in ['General-2K'] else (2560, 1440) # wid, hei
62
+ self.num_workers = max(4, self.batch_size) # will be decrease to min(it, batch_size) at the initialization of the data_loader
63
+
64
+ # Backbone settings
65
+ self.bb = [
66
+ 'vgg16', 'vgg16bn', 'resnet50', # 0, 1, 2
67
+ 'swin_v1_t', 'swin_v1_s', # 3, 4
68
+ 'swin_v1_b', 'swin_v1_l', # 5-bs9, 6-bs4
69
+ 'pvt_v2_b0', 'pvt_v2_b1', # 7, 8
70
+ 'pvt_v2_b2', 'pvt_v2_b5', # 9-bs10, 10-bs5
71
+ ][6]
72
+ self.lateral_channels_in_collection = {
73
+ 'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
74
+ 'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
75
+ 'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
76
+ 'swin_v1_t': [768, 384, 192, 96], 'swin_v1_s': [768, 384, 192, 96],
77
+ 'pvt_v2_b0': [256, 160, 64, 32], 'pvt_v2_b1': [512, 320, 128, 64],
78
+ }[self.bb]
79
+ if self.mul_scl_ipt == 'cat':
80
+ self.lateral_channels_in_collection = [channel * 2 for channel in self.lateral_channels_in_collection]
81
+ self.cxt = self.lateral_channels_in_collection[1:][::-1][-self.cxt_num:] if self.cxt_num else []
82
+
83
+ # MODEL settings - inactive
84
+ self.lat_blk = ['BasicLatBlk'][0]
85
+ self.dec_channels_inter = ['fixed', 'adap'][0]
86
+ self.refine = ['', 'itself', 'RefUNet', 'Refiner', 'RefinerPVTInChannels4'][0]
87
+ self.progressive_ref = self.refine and True
88
+ self.ender = self.progressive_ref and False
89
+ self.scale = self.progressive_ref and 2
90
+ self.auxiliary_classification = False # Only for DIS5K, where class labels are saved in `dataset.py`.
91
+ self.refine_iteration = 1
92
+ self.freeze_bb = False
93
+ self.model = [
94
+ 'BiRefNet',
95
+ ][0]
96
+
97
+ # TRAINING settings - inactive
98
+ self.preproc_methods = ['flip', 'enhance', 'rotate', 'pepper', 'crop'][:4]
99
+ self.optimizer = ['Adam', 'AdamW'][1]
100
+ self.lr_decay_epochs = [1e5] # Set to negative N to decay the lr in the last N-th epoch.
101
+ self.lr_decay_rate = 0.5
102
+ # Loss
103
+ if self.task not in ['Matting']:
104
+ self.lambdas_pix_last = {
105
+ # not 0 means opening this loss
106
+ # original rate -- 1 : 30 : 1.5 : 0.2, bce x 30
107
+ 'bce': 30 * 1, # high performance
108
+ 'iou': 0.5 * 1, # 0 / 255
109
+ 'iou_patch': 0.5 * 0, # 0 / 255, win_size = (64, 64)
110
+ 'mae': 30 * 0,
111
+ 'mse': 30 * 0, # can smooth the saliency map
112
+ 'triplet': 3 * 0,
113
+ 'reg': 100 * 0,
114
+ 'ssim': 10 * 1, # help contours,
115
+ 'cnt': 5 * 0, # help contours
116
+ 'structure': 5 * 0, # structure loss from codes of MVANet. A little improvement on DIS-TE[1,2,3], a bit more decrease on DIS-TE4.
117
+ }
118
+ else:
119
+ self.lambdas_pix_last = {
120
+ # not 0 means opening this loss
121
+ # original rate -- 1 : 30 : 1.5 : 0.2, bce x 30
122
+ 'bce': 30 * 0, # high performance
123
+ 'iou': 0.5 * 0, # 0 / 255
124
+ 'iou_patch': 0.5 * 0, # 0 / 255, win_size = (64, 64)
125
+ 'mae': 100 * 1,
126
+ 'mse': 30 * 0, # can smooth the saliency map
127
+ 'triplet': 3 * 0,
128
+ 'reg': 100 * 0,
129
+ 'ssim': 10 * 1, # help contours,
130
+ 'cnt': 5 * 0, # help contours
131
+ 'structure': 5 * 0, # structure loss from codes of MVANet. A little improvement on DIS-TE[1,2,3], a bit more decrease on DIS-TE4.
132
+ }
133
+ self.lambdas_cls = {
134
+ 'ce': 5.0
135
+ }
136
+ # Adv
137
+ self.lambda_adv_g = 10. * 0 # turn to 0 to avoid adv training
138
+ self.lambda_adv_d = 3. * (self.lambda_adv_g > 0)
139
+
140
+ # PATH settings - inactive
141
+ self.weights_root_dir = os.path.join(self.sys_home_dir, 'weights/cv')
142
+ self.weights = {
143
+ 'pvt_v2_b2': os.path.join(self.weights_root_dir, 'pvt_v2_b2.pth'),
144
+ 'pvt_v2_b5': os.path.join(self.weights_root_dir, ['pvt_v2_b5.pth', 'pvt_v2_b5_22k.pth'][0]),
145
+ 'swin_v1_b': os.path.join(self.weights_root_dir, ['swin_base_patch4_window12_384_22kto1k.pth', 'swin_base_patch4_window12_384_22k.pth'][0]),
146
+ 'swin_v1_l': os.path.join(self.weights_root_dir, ['swin_large_patch4_window12_384_22kto1k.pth', 'swin_large_patch4_window12_384_22k.pth'][0]),
147
+ 'swin_v1_t': os.path.join(self.weights_root_dir, ['swin_tiny_patch4_window7_224_22kto1k_finetune.pth'][0]),
148
+ 'swin_v1_s': os.path.join(self.weights_root_dir, ['swin_small_patch4_window7_224_22kto1k_finetune.pth'][0]),
149
+ 'pvt_v2_b0': os.path.join(self.weights_root_dir, ['pvt_v2_b0.pth'][0]),
150
+ 'pvt_v2_b1': os.path.join(self.weights_root_dir, ['pvt_v2_b1.pth'][0]),
151
+ }
152
+
153
+ # Callbacks - inactive
154
+ self.verbose_eval = True
155
+ self.only_S_MAE = False
156
+ self.SDPA_enabled = False # Bugs. Slower and errors occur in multi-GPUs
157
+
158
+ # others
159
+ self.device = [0, 'cpu'][0] # .to(0) == .to('cuda:0')
160
+
161
+ self.batch_size_valid = 1
162
+ self.rand_seed = 7
163
+ run_sh_file = [f for f in os.listdir('.') if 'train.sh' == f] + [os.path.join('..', f) for f in os.listdir('..') if 'train.sh' == f]
164
+ if run_sh_file:
165
+ with open(run_sh_file[0], 'r') as f:
166
+ lines = f.readlines()
167
+ self.save_last = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'val_last=' in l][0].split('val_last=')[-1].split()[0])
168
+ self.save_step = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'step=' in l][0].split('step=')[-1].split()[0])
169
+
170
+ def print_task(self) -> None:
171
+ # Return task for choosing settings in shell scripts.
172
+ print(self.task)
173
+
174
+ if __name__ == '__main__':
175
+ config = Config()
176
+ config.print_task()
177
+
models/dataset.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ from tqdm import tqdm
4
+ from PIL import Image
5
+ from torch.utils import data
6
+ from torchvision import transforms
7
+
8
+ from models.image_proc import preproc
9
+ from models.config import Config
10
+ from util.utils import path_to_image
11
+
12
+
13
+ Image.MAX_IMAGE_PIXELS = None # remove DecompressionBombWarning
14
+ config = Config()
15
+ _class_labels_TR_sorted = (
16
+ 'Airplane, Ant, Antenna, Archery, Axe, BabyCarriage, Bag, BalanceBeam, Balcony, Balloon, Basket, BasketballHoop, Beatle, Bed, Bee, Bench, Bicycle, '
17
+ 'BicycleFrame, BicycleStand, Boat, Bonsai, BoomLift, Bridge, BunkBed, Butterfly, Button, Cable, CableLift, Cage, Camcorder, Cannon, Canoe, Car, '
18
+ 'CarParkDropArm, Carriage, Cart, Caterpillar, CeilingLamp, Centipede, Chair, Clip, Clock, Clothes, CoatHanger, Comb, ConcretePumpTruck, Crack, Crane, '
19
+ 'Cup, DentalChair, Desk, DeskChair, Diagram, DishRack, DoorHandle, Dragonfish, Dragonfly, Drum, Earphone, Easel, ElectricIron, Excavator, Eyeglasses, '
20
+ 'Fan, Fence, Fencing, FerrisWheel, FireExtinguisher, Fishing, Flag, FloorLamp, Forklift, GasStation, Gate, Gear, Goal, Golf, GymEquipment, Hammock, '
21
+ 'Handcart, Handcraft, Handrail, HangGlider, Harp, Harvester, Headset, Helicopter, Helmet, Hook, HorizontalBar, Hydrovalve, IroningTable, Jewelry, Key, '
22
+ 'KidsPlayground, Kitchenware, Kite, Knife, Ladder, LaundryRack, Lightning, Lobster, Locust, Machine, MachineGun, MagazineRack, Mantis, Medal, MemorialArchway, '
23
+ 'Microphone, Missile, MobileHolder, Monitor, Mosquito, Motorcycle, MovingTrolley, Mower, MusicPlayer, MusicStand, ObservationTower, Octopus, OilWell, '
24
+ 'OlympicLogo, OperatingTable, OutdoorFitnessEquipment, Parachute, Pavilion, Piano, Pipe, PlowHarrow, PoleVault, Punchbag, Rack, Racket, Rifle, Ring, Robot, '
25
+ 'RockClimbing, Rope, Sailboat, Satellite, Scaffold, Scale, Scissor, Scooter, Sculpture, Seadragon, Seahorse, Seal, SewingMachine, Ship, Shoe, ShoppingCart, '
26
+ 'ShoppingTrolley, Shower, Shrimp, Signboard, Skateboarding, Skeleton, Skiing, Spade, SpeedBoat, Spider, Spoon, Stair, Stand, Stationary, SteeringWheel, '
27
+ 'Stethoscope, Stool, Stove, StreetLamp, SweetStand, Swing, Sword, TV, Table, TableChair, TableLamp, TableTennis, Tank, Tapeline, Teapot, Telescope, Tent, '
28
+ 'TobaccoPipe, Toy, Tractor, TrafficLight, TrafficSign, Trampoline, TransmissionTower, Tree, Tricycle, TrimmerCover, Tripod, Trombone, Truck, Trumpet, Tuba, '
29
+ 'UAV, Umbrella, UnevenBars, UtilityPole, VacuumCleaner, Violin, Wakesurfing, Watch, WaterTower, WateringPot, Well, WellLid, Wheel, Wheelchair, WindTurbine, Windmill, WineGlass, WireWhisk, Yacht'
30
+ )
31
+ class_labels_TR_sorted = _class_labels_TR_sorted.split(', ')
32
+
33
+
34
+ class MyData(data.Dataset):
35
+ def __init__(self, datasets, image_size, is_train=True):
36
+ self.size_train = image_size
37
+ self.size_test = image_size
38
+ self.keep_size = not config.size
39
+ self.data_size = config.size
40
+ self.is_train = is_train
41
+ self.load_all = config.load_all
42
+ self.device = config.device
43
+ valid_extensions = ['.png', '.jpg', '.PNG', '.JPG', '.JPEG']
44
+
45
+ if self.is_train and config.auxiliary_classification:
46
+ self.cls_name2id = {_name: _id for _id, _name in enumerate(class_labels_TR_sorted)}
47
+ self.transform_image = transforms.Compose([
48
+ transforms.Resize(self.data_size[::-1]),
49
+ transforms.ToTensor(),
50
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
51
+ ][self.load_all or self.keep_size:])
52
+ self.transform_label = transforms.Compose([
53
+ transforms.Resize(self.data_size[::-1]),
54
+ transforms.ToTensor(),
55
+ ][self.load_all or self.keep_size:])
56
+ dataset_root = os.path.join(config.data_root_dir, config.task)
57
+ # datasets can be a list of different datasets for training on combined sets.
58
+ self.image_paths = []
59
+ for dataset in datasets.split('+'):
60
+ image_root = os.path.join(dataset_root, dataset, 'im')
61
+ self.image_paths += [os.path.join(image_root, p) for p in os.listdir(image_root) if any(p.endswith(ext) for ext in valid_extensions)]
62
+ self.label_paths = []
63
+ for p in self.image_paths:
64
+ for ext in valid_extensions:
65
+ ## 'im' and 'gt' may need modifying
66
+ p_gt = p.replace('/im/', '/gt/')[:-(len(p.split('.')[-1])+1)] + ext
67
+ file_exists = False
68
+ if os.path.exists(p_gt):
69
+ self.label_paths.append(p_gt)
70
+ file_exists = True
71
+ break
72
+ if not file_exists:
73
+ print('Not exists:', p_gt)
74
+
75
+ if len(self.label_paths) != len(self.image_paths):
76
+ set_image_paths = set([os.path.splitext(p.split(os.sep)[-1])[0] for p in self.image_paths])
77
+ set_label_paths = set([os.path.splitext(p.split(os.sep)[-1])[0] for p in self.label_paths])
78
+ print('diff:', set_image_paths - set_label_paths)
79
+ raise ValueError(f"There are different numbers of images ({len(self.label_paths)}) and labels ({len(self.image_paths)})")
80
+
81
+ if self.load_all:
82
+ self.images_loaded, self.labels_loaded = [], []
83
+ self.class_labels_loaded = []
84
+ # for image_path, label_path in zip(self.image_paths, self.label_paths):
85
+ for image_path, label_path in tqdm(zip(self.image_paths, self.label_paths), total=len(self.image_paths)):
86
+ _image = path_to_image(image_path, size=config.size, color_type='rgb')
87
+ _label = path_to_image(label_path, size=config.size, color_type='gray')
88
+ self.images_loaded.append(_image)
89
+ self.labels_loaded.append(_label)
90
+ self.class_labels_loaded.append(
91
+ self.cls_name2id[label_path.split('/')[-1].split('#')[3]] if self.is_train and config.auxiliary_classification else -1
92
+ )
93
+
94
+ def __getitem__(self, index):
95
+
96
+ if self.load_all:
97
+ image = self.images_loaded[index]
98
+ label = self.labels_loaded[index]
99
+ class_label = self.class_labels_loaded[index] if self.is_train and config.auxiliary_classification else -1
100
+ else:
101
+ image = path_to_image(self.image_paths[index], size=config.size, color_type='rgb')
102
+ label = path_to_image(self.label_paths[index], size=config.size, color_type='gray')
103
+ class_label = self.cls_name2id[self.label_paths[index].split('/')[-1].split('#')[3]] if self.is_train and config.auxiliary_classification else -1
104
+
105
+ # loading image and label
106
+ if self.is_train:
107
+ image, label = preproc(image, label, preproc_methods=config.preproc_methods)
108
+ # else:
109
+ # if _label.shape[0] > 2048 or _label.shape[1] > 2048:
110
+ # _image = cv2.resize(_image, (2048, 2048), interpolation=cv2.INTER_LINEAR)
111
+ # _label = cv2.resize(_label, (2048, 2048), interpolation=cv2.INTER_LINEAR)
112
+
113
+ image, label = self.transform_image(image), self.transform_label(label)
114
+
115
+ if self.is_train:
116
+ return image, label, class_label
117
+ else:
118
+ return image, label, self.label_paths[index]
119
+
120
+ def __len__(self):
121
+ return len(self.image_paths)
models/image_proc.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ from PIL import Image, ImageEnhance
3
+ import numpy as np
4
+ import cv2
5
+
6
+
7
+ def refine_foreground(image, mask, r=90):
8
+ if mask.size != image.size:
9
+ mask = mask.resize(image.size)
10
+ image = np.array(image) / 255.0
11
+ mask = np.array(mask) / 255.0
12
+ estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r)
13
+ image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
14
+ return image_masked
15
+
16
+
17
+ def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
18
+ # Thanks to the source: https://github.com/Photoroom/fast-foreground-estimation
19
+ alpha = alpha[:, :, None]
20
+ F, blur_B = FB_blur_fusion_foreground_estimator(
21
+ image, image, image, alpha, r)
22
+ return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]
23
+
24
+
25
+ def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
26
+ if isinstance(image, Image.Image):
27
+ image = np.array(image) / 255.0
28
+ blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
29
+
30
+ blurred_FA = cv2.blur(F * alpha, (r, r))
31
+ blurred_F = blurred_FA / (blurred_alpha + 1e-5)
32
+
33
+ blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
34
+ blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
35
+ F = blurred_F + alpha * \
36
+ (image - alpha * blurred_F - (1 - alpha) * blurred_B)
37
+ F = np.clip(F, 0, 1)
38
+ return F, blurred_B
39
+
40
+
41
+ def preproc(image, label, preproc_methods=['flip']):
42
+ if 'flip' in preproc_methods:
43
+ image, label = cv_random_flip(image, label)
44
+ if 'crop' in preproc_methods:
45
+ image, label = random_crop(image, label)
46
+ if 'rotate' in preproc_methods:
47
+ image, label = random_rotate(image, label)
48
+ if 'enhance' in preproc_methods:
49
+ image = color_enhance(image)
50
+ if 'pepper' in preproc_methods:
51
+ image = random_pepper(image)
52
+ return image, label
53
+
54
+
55
+ def cv_random_flip(img, label):
56
+ if random.random() > 0.5:
57
+ img = img.transpose(Image.FLIP_LEFT_RIGHT)
58
+ label = label.transpose(Image.FLIP_LEFT_RIGHT)
59
+ return img, label
60
+
61
+
62
+ def random_crop(image, label):
63
+ border = 30
64
+ image_width = image.size[0]
65
+ image_height = image.size[1]
66
+ border = int(min(image_width, image_height) * 0.1)
67
+ crop_win_width = np.random.randint(image_width - border, image_width)
68
+ crop_win_height = np.random.randint(image_height - border, image_height)
69
+ random_region = (
70
+ (image_width - crop_win_width) >> 1, (image_height - crop_win_height) >> 1, (image_width + crop_win_width) >> 1,
71
+ (image_height + crop_win_height) >> 1)
72
+ return image.crop(random_region), label.crop(random_region)
73
+
74
+
75
+ def random_rotate(image, label, angle=15):
76
+ mode = Image.BICUBIC
77
+ if random.random() > 0.8:
78
+ random_angle = np.random.randint(-angle, angle)
79
+ image = image.rotate(random_angle, mode)
80
+ label = label.rotate(random_angle, mode)
81
+ return image, label
82
+
83
+
84
+ def color_enhance(image):
85
+ bright_intensity = random.randint(5, 15) / 10.0
86
+ image = ImageEnhance.Brightness(image).enhance(bright_intensity)
87
+ contrast_intensity = random.randint(5, 15) / 10.0
88
+ image = ImageEnhance.Contrast(image).enhance(contrast_intensity)
89
+ color_intensity = random.randint(0, 20) / 10.0
90
+ image = ImageEnhance.Color(image).enhance(color_intensity)
91
+ sharp_intensity = random.randint(0, 30) / 10.0
92
+ image = ImageEnhance.Sharpness(image).enhance(sharp_intensity)
93
+ return image
94
+
95
+
96
+ def random_gaussian(image, mean=0.1, sigma=0.35):
97
+ def gaussianNoisy(im, mean=mean, sigma=sigma):
98
+ for _i in range(len(im)):
99
+ im[_i] += random.gauss(mean, sigma)
100
+ return im
101
+
102
+ img = np.asarray(image)
103
+ width, height = img.shape
104
+ img = gaussianNoisy(img[:].flatten(), mean, sigma)
105
+ img = img.reshape([width, height])
106
+ return Image.fromarray(np.uint8(img))
107
+
108
+
109
+ def random_pepper(img, N=0.0015):
110
+ img = np.array(img)
111
+ noiseNum = int(N * img.shape[0] * img.shape[1])
112
+ for i in range(noiseNum):
113
+ randX = random.randint(0, img.shape[0] - 1)
114
+ randY = random.randint(0, img.shape[1] - 1)
115
+ img[randX, randY] = random.randint(0, 1) * 255
116
+ return Image.fromarray(img)
models/modules/__pycache__/aspp.cpython-311.pyc ADDED
Binary file (9.92 kB). View file
 
models/modules/__pycache__/decoder_blocks.cpython-311.pyc ADDED
Binary file (5.03 kB). View file
 
models/modules/__pycache__/deform_conv.cpython-311.pyc ADDED
Binary file (3.12 kB). View file
 
models/modules/__pycache__/lateral_blocks.cpython-311.pyc ADDED
Binary file (1.62 kB). View file
 
models/modules/__pycache__/utils.cpython-311.pyc ADDED
Binary file (3.34 kB). View file
 
models/modules/aspp.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from models.modules.deform_conv import DeformableConv2d
5
+ from models.config import Config
6
+
7
+
8
+ config = Config()
9
+
10
+
11
+ class _ASPPModule(nn.Module):
12
+ def __init__(self, in_channels, planes, kernel_size, padding, dilation):
13
+ super(_ASPPModule, self).__init__()
14
+ self.atrous_conv = nn.Conv2d(in_channels, planes, kernel_size=kernel_size,
15
+ stride=1, padding=padding, dilation=dilation, bias=False)
16
+ self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
17
+ self.relu = nn.ReLU(inplace=True)
18
+
19
+ def forward(self, x):
20
+ x = self.atrous_conv(x)
21
+ x = self.bn(x)
22
+
23
+ return self.relu(x)
24
+
25
+
26
+ class ASPP(nn.Module):
27
+ def __init__(self, in_channels=64, out_channels=None, output_stride=16):
28
+ super(ASPP, self).__init__()
29
+ self.down_scale = 1
30
+ if out_channels is None:
31
+ out_channels = in_channels
32
+ self.in_channelster = 256 // self.down_scale
33
+ if output_stride == 16:
34
+ dilations = [1, 6, 12, 18]
35
+ elif output_stride == 8:
36
+ dilations = [1, 12, 24, 36]
37
+ else:
38
+ raise NotImplementedError
39
+
40
+ self.aspp1 = _ASPPModule(in_channels, self.in_channelster, 1, padding=0, dilation=dilations[0])
41
+ self.aspp2 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[1], dilation=dilations[1])
42
+ self.aspp3 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[2], dilation=dilations[2])
43
+ self.aspp4 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[3], dilation=dilations[3])
44
+
45
+ self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
46
+ nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
47
+ nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
48
+ nn.ReLU(inplace=True))
49
+ self.conv1 = nn.Conv2d(self.in_channelster * 5, out_channels, 1, bias=False)
50
+ self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
51
+ self.relu = nn.ReLU(inplace=True)
52
+ self.dropout = nn.Dropout(0.5)
53
+
54
+ def forward(self, x):
55
+ x1 = self.aspp1(x)
56
+ x2 = self.aspp2(x)
57
+ x3 = self.aspp3(x)
58
+ x4 = self.aspp4(x)
59
+ x5 = self.global_avg_pool(x)
60
+ x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
61
+ x = torch.cat((x1, x2, x3, x4, x5), dim=1)
62
+
63
+ x = self.conv1(x)
64
+ x = self.bn1(x)
65
+ x = self.relu(x)
66
+
67
+ return self.dropout(x)
68
+
69
+
70
+ ##################### Deformable
71
+ class _ASPPModuleDeformable(nn.Module):
72
+ def __init__(self, in_channels, planes, kernel_size, padding):
73
+ super(_ASPPModuleDeformable, self).__init__()
74
+ self.atrous_conv = DeformableConv2d(in_channels, planes, kernel_size=kernel_size,
75
+ stride=1, padding=padding, bias=False)
76
+ self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
77
+ self.relu = nn.ReLU(inplace=True)
78
+
79
+ def forward(self, x):
80
+ x = self.atrous_conv(x)
81
+ x = self.bn(x)
82
+
83
+ return self.relu(x)
84
+
85
+
86
+ class ASPPDeformable(nn.Module):
87
+ def __init__(self, in_channels, out_channels=None, parallel_block_sizes=[1, 3, 7]):
88
+ super(ASPPDeformable, self).__init__()
89
+ self.down_scale = 1
90
+ if out_channels is None:
91
+ out_channels = in_channels
92
+ self.in_channelster = 256 // self.down_scale
93
+
94
+ self.aspp1 = _ASPPModuleDeformable(in_channels, self.in_channelster, 1, padding=0)
95
+ self.aspp_deforms = nn.ModuleList([
96
+ _ASPPModuleDeformable(in_channels, self.in_channelster, conv_size, padding=int(conv_size//2)) for conv_size in parallel_block_sizes
97
+ ])
98
+
99
+ self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
100
+ nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
101
+ nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
102
+ nn.ReLU(inplace=True))
103
+ self.conv1 = nn.Conv2d(self.in_channelster * (2 + len(self.aspp_deforms)), out_channels, 1, bias=False)
104
+ self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
105
+ self.relu = nn.ReLU(inplace=True)
106
+ self.dropout = nn.Dropout(0.5)
107
+
108
+ def forward(self, x):
109
+ x1 = self.aspp1(x)
110
+ x_aspp_deforms = [aspp_deform(x) for aspp_deform in self.aspp_deforms]
111
+ x5 = self.global_avg_pool(x)
112
+ x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
113
+ x = torch.cat((x1, *x_aspp_deforms, x5), dim=1)
114
+
115
+ x = self.conv1(x)
116
+ x = self.bn1(x)
117
+ x = self.relu(x)
118
+
119
+ return self.dropout(x)
models/modules/decoder_blocks.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from models.modules.aspp import ASPP, ASPPDeformable
4
+ from models.config import Config
5
+
6
+
7
+ config = Config()
8
+
9
+
10
+ class BasicDecBlk(nn.Module):
11
+ def __init__(self, in_channels=64, out_channels=64, inter_channels=64):
12
+ super(BasicDecBlk, self).__init__()
13
+ inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
14
+ self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
15
+ self.relu_in = nn.ReLU(inplace=True)
16
+ if config.dec_att == 'ASPP':
17
+ self.dec_att = ASPP(in_channels=inter_channels)
18
+ elif config.dec_att == 'ASPPDeformable':
19
+ self.dec_att = ASPPDeformable(in_channels=inter_channels)
20
+ self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
21
+ self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity()
22
+ self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
23
+
24
+ def forward(self, x):
25
+ x = self.conv_in(x)
26
+ x = self.bn_in(x)
27
+ x = self.relu_in(x)
28
+ if hasattr(self, 'dec_att'):
29
+ x = self.dec_att(x)
30
+ x = self.conv_out(x)
31
+ x = self.bn_out(x)
32
+ return x
33
+
34
+
35
+ class ResBlk(nn.Module):
36
+ def __init__(self, in_channels=64, out_channels=None, inter_channels=64):
37
+ super(ResBlk, self).__init__()
38
+ if out_channels is None:
39
+ out_channels = in_channels
40
+ inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
41
+
42
+ self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
43
+ self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity()
44
+ self.relu_in = nn.ReLU(inplace=True)
45
+
46
+ if config.dec_att == 'ASPP':
47
+ self.dec_att = ASPP(in_channels=inter_channels)
48
+ elif config.dec_att == 'ASPPDeformable':
49
+ self.dec_att = ASPPDeformable(in_channels=inter_channels)
50
+
51
+ self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
52
+ self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
53
+
54
+ self.conv_resi = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
55
+
56
+ def forward(self, x):
57
+ _x = self.conv_resi(x)
58
+ x = self.conv_in(x)
59
+ x = self.bn_in(x)
60
+ x = self.relu_in(x)
61
+ if hasattr(self, 'dec_att'):
62
+ x = self.dec_att(x)
63
+ x = self.conv_out(x)
64
+ x = self.bn_out(x)
65
+ return x + _x
models/modules/deform_conv.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from torchvision.ops import deform_conv2d
4
+
5
+
6
+ class DeformableConv2d(nn.Module):
7
+ def __init__(self,
8
+ in_channels,
9
+ out_channels,
10
+ kernel_size=3,
11
+ stride=1,
12
+ padding=1,
13
+ bias=False):
14
+
15
+ super(DeformableConv2d, self).__init__()
16
+
17
+ assert type(kernel_size) == tuple or type(kernel_size) == int
18
+
19
+ kernel_size = kernel_size if type(kernel_size) == tuple else (kernel_size, kernel_size)
20
+ self.stride = stride if type(stride) == tuple else (stride, stride)
21
+ self.padding = padding
22
+
23
+ self.offset_conv = nn.Conv2d(in_channels,
24
+ 2 * kernel_size[0] * kernel_size[1],
25
+ kernel_size=kernel_size,
26
+ stride=stride,
27
+ padding=self.padding,
28
+ bias=True)
29
+
30
+ nn.init.constant_(self.offset_conv.weight, 0.)
31
+ nn.init.constant_(self.offset_conv.bias, 0.)
32
+
33
+ self.modulator_conv = nn.Conv2d(in_channels,
34
+ 1 * kernel_size[0] * kernel_size[1],
35
+ kernel_size=kernel_size,
36
+ stride=stride,
37
+ padding=self.padding,
38
+ bias=True)
39
+
40
+ nn.init.constant_(self.modulator_conv.weight, 0.)
41
+ nn.init.constant_(self.modulator_conv.bias, 0.)
42
+
43
+ self.regular_conv = nn.Conv2d(in_channels,
44
+ out_channels=out_channels,
45
+ kernel_size=kernel_size,
46
+ stride=stride,
47
+ padding=self.padding,
48
+ bias=bias)
49
+
50
+ def forward(self, x):
51
+ #h, w = x.shape[2:]
52
+ #max_offset = max(h, w)/4.
53
+
54
+ offset = self.offset_conv(x)#.clamp(-max_offset, max_offset)
55
+ modulator = 2. * torch.sigmoid(self.modulator_conv(x))
56
+
57
+ x = deform_conv2d(
58
+ input=x,
59
+ offset=offset,
60
+ weight=self.regular_conv.weight,
61
+ bias=self.regular_conv.bias,
62
+ padding=self.padding,
63
+ mask=modulator,
64
+ stride=self.stride,
65
+ )
66
+ return x
models/modules/lateral_blocks.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ from functools import partial
6
+
7
+ from models.config import Config
8
+
9
+
10
+ config = Config()
11
+
12
+
13
+ class BasicLatBlk(nn.Module):
14
+ def __init__(self, in_channels=64, out_channels=64, inter_channels=64):
15
+ super(BasicLatBlk, self).__init__()
16
+ inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
17
+ self.conv = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
18
+
19
+ def forward(self, x):
20
+ x = self.conv(x)
21
+ return x
models/modules/mlp.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from functools import partial
4
+
5
+ from timm.models.layers import DropPath, to_2tuple, trunc_normal_
6
+ from timm.models.registry import register_model
7
+
8
+ import math
9
+
10
+
11
+ class MLPLayer(nn.Module):
12
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
13
+ super().__init__()
14
+ out_features = out_features or in_features
15
+ hidden_features = hidden_features or in_features
16
+ self.fc1 = nn.Linear(in_features, hidden_features)
17
+ self.act = act_layer()
18
+ self.fc2 = nn.Linear(hidden_features, out_features)
19
+ self.drop = nn.Dropout(drop)
20
+
21
+ def forward(self, x):
22
+ x = self.fc1(x)
23
+ x = self.act(x)
24
+ x = self.drop(x)
25
+ x = self.fc2(x)
26
+ x = self.drop(x)
27
+ return x
28
+
29
+
30
+ class Attention(nn.Module):
31
+ def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
32
+ super().__init__()
33
+ assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
34
+
35
+ self.dim = dim
36
+ self.num_heads = num_heads
37
+ head_dim = dim // num_heads
38
+ self.scale = qk_scale or head_dim ** -0.5
39
+
40
+ self.q = nn.Linear(dim, dim, bias=qkv_bias)
41
+ self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
42
+ self.attn_drop = nn.Dropout(attn_drop)
43
+ self.proj = nn.Linear(dim, dim)
44
+ self.proj_drop = nn.Dropout(proj_drop)
45
+
46
+ self.sr_ratio = sr_ratio
47
+ if sr_ratio > 1:
48
+ self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
49
+ self.norm = nn.LayerNorm(dim)
50
+
51
+ def forward(self, x, H, W):
52
+ B, N, C = x.shape
53
+ q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
54
+
55
+ if self.sr_ratio > 1:
56
+ x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
57
+ x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
58
+ x_ = self.norm(x_)
59
+ kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
60
+ else:
61
+ kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
62
+ k, v = kv[0], kv[1]
63
+
64
+ attn = (q @ k.transpose(-2, -1)) * self.scale
65
+ attn = attn.softmax(dim=-1)
66
+ attn = self.attn_drop(attn)
67
+
68
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
69
+ x = self.proj(x)
70
+ x = self.proj_drop(x)
71
+ return x
72
+
73
+
74
+ class Block(nn.Module):
75
+ def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
76
+ drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
77
+ super().__init__()
78
+ self.norm1 = norm_layer(dim)
79
+ self.attn = Attention(
80
+ dim,
81
+ num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
82
+ attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
83
+ # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
84
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
85
+ self.norm2 = norm_layer(dim)
86
+ mlp_hidden_dim = int(dim * mlp_ratio)
87
+ self.mlp = MLPLayer(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
88
+
89
+ def forward(self, x, H, W):
90
+ x = x + self.drop_path(self.attn(self.norm1(x), H, W))
91
+ x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
92
+ return x
93
+
94
+
95
+ class OverlapPatchEmbed(nn.Module):
96
+ """ Image to Patch Embedding
97
+ """
98
+
99
+ def __init__(self, img_size=224, patch_size=7, stride=4, in_channels=3, embed_dim=768):
100
+ super().__init__()
101
+ img_size = to_2tuple(img_size)
102
+ patch_size = to_2tuple(patch_size)
103
+
104
+ self.img_size = img_size
105
+ self.patch_size = patch_size
106
+ self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
107
+ self.num_patches = self.H * self.W
108
+ self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=stride,
109
+ padding=(patch_size[0] // 2, patch_size[1] // 2))
110
+ self.norm = nn.LayerNorm(embed_dim)
111
+
112
+ def forward(self, x):
113
+ x = self.proj(x)
114
+ _, _, H, W = x.shape
115
+ x = x.flatten(2).transpose(1, 2)
116
+ x = self.norm(x)
117
+ return x, H, W
118
+
models/modules/prompt_encoder.py ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn as nn
4
+ from typing import Any, Optional, Tuple, Type
5
+
6
+
7
+ class PromptEncoder(nn.Module):
8
+ def __init__(
9
+ self,
10
+ embed_dim=256,
11
+ image_embedding_size=1024,
12
+ input_image_size=(1024, 1024),
13
+ mask_in_chans=16,
14
+ activation=nn.GELU
15
+ ) -> None:
16
+ super().__init__()
17
+ """
18
+ Codes are partially from SAM: https://github.com/facebookresearch/segment-anything/blob/6fdee8f2727f4506cfbbe553e23b895e27956588/segment_anything/modeling/prompt_encoder.py.
19
+
20
+ Arguments:
21
+ embed_dim (int): The prompts' embedding dimension
22
+ image_embedding_size (tuple(int, int)): The spatial size of the
23
+ image embedding, as (H, W).
24
+ input_image_size (int): The padded size of the image as input
25
+ to the image encoder, as (H, W).
26
+ mask_in_chans (int): The number of hidden channels used for
27
+ encoding input masks.
28
+ activation (nn.Module): The activation to use when encoding
29
+ input masks.
30
+ """
31
+ super().__init__()
32
+ self.embed_dim = embed_dim
33
+ self.input_image_size = input_image_size
34
+ self.image_embedding_size = image_embedding_size
35
+ self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
36
+
37
+ self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
38
+ point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)]
39
+ self.point_embeddings = nn.ModuleList(point_embeddings)
40
+ self.not_a_point_embed = nn.Embedding(1, embed_dim)
41
+
42
+ self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1])
43
+ self.mask_downscaling = nn.Sequential(
44
+ nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
45
+ LayerNorm2d(mask_in_chans // 4),
46
+ activation(),
47
+ nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
48
+ LayerNorm2d(mask_in_chans),
49
+ activation(),
50
+ nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
51
+ )
52
+ self.no_mask_embed = nn.Embedding(1, embed_dim)
53
+
54
+ def get_dense_pe(self) -> torch.Tensor:
55
+ """
56
+ Returns the positional encoding used to encode point prompts,
57
+ applied to a dense set of points the shape of the image encoding.
58
+
59
+ Returns:
60
+ torch.Tensor: Positional encoding with shape
61
+ 1x(embed_dim)x(embedding_h)x(embedding_w)
62
+ """
63
+ return self.pe_layer(self.image_embedding_size).unsqueeze(0)
64
+
65
+ def _embed_points(
66
+ self,
67
+ points: torch.Tensor,
68
+ labels: torch.Tensor,
69
+ pad: bool,
70
+ ) -> torch.Tensor:
71
+ """Embeds point prompts."""
72
+ points = points + 0.5 # Shift to center of pixel
73
+ if pad:
74
+ padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
75
+ padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
76
+ points = torch.cat([points, padding_point], dim=1)
77
+ labels = torch.cat([labels, padding_label], dim=1)
78
+ point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
79
+ point_embedding[labels == -1] = 0.0
80
+ point_embedding[labels == -1] += self.not_a_point_embed.weight
81
+ point_embedding[labels == 0] += self.point_embeddings[0].weight
82
+ point_embedding[labels == 1] += self.point_embeddings[1].weight
83
+ return point_embedding
84
+
85
+ def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
86
+ """Embeds box prompts."""
87
+ boxes = boxes + 0.5 # Shift to center of pixel
88
+ coords = boxes.reshape(-1, 2, 2)
89
+ corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
90
+ corner_embedding[:, 0, :] += self.point_embeddings[2].weight
91
+ corner_embedding[:, 1, :] += self.point_embeddings[3].weight
92
+ return corner_embedding
93
+
94
+ def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
95
+ """Embeds mask inputs."""
96
+ mask_embedding = self.mask_downscaling(masks)
97
+ return mask_embedding
98
+
99
+ def _get_batch_size(
100
+ self,
101
+ points: Optional[Tuple[torch.Tensor, torch.Tensor]],
102
+ boxes: Optional[torch.Tensor],
103
+ masks: Optional[torch.Tensor],
104
+ ) -> int:
105
+ """
106
+ Gets the batch size of the output given the batch size of the input prompts.
107
+ """
108
+ if points is not None:
109
+ return points[0].shape[0]
110
+ elif boxes is not None:
111
+ return boxes.shape[0]
112
+ elif masks is not None:
113
+ return masks.shape[0]
114
+ else:
115
+ return 1
116
+
117
+ def _get_device(self) -> torch.device:
118
+ return self.point_embeddings[0].weight.device
119
+
120
+ def forward(
121
+ self,
122
+ points: Optional[Tuple[torch.Tensor, torch.Tensor]],
123
+ boxes: Optional[torch.Tensor],
124
+ masks: Optional[torch.Tensor],
125
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
126
+ """
127
+ Embeds different types of prompts, returning both sparse and dense
128
+ embeddings.
129
+
130
+ Arguments:
131
+ points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
132
+ and labels to embed.
133
+ boxes (torch.Tensor or none): boxes to embed
134
+ masks (torch.Tensor or none): masks to embed
135
+
136
+ Returns:
137
+ torch.Tensor: sparse embeddings for the points and boxes, with shape
138
+ BxNx(embed_dim), where N is determined by the number of input points
139
+ and boxes.
140
+ torch.Tensor: dense embeddings for the masks, in the shape
141
+ Bx(embed_dim)x(embed_H)x(embed_W)
142
+ """
143
+ bs = self._get_batch_size(points, boxes, masks)
144
+ sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
145
+ if points is not None:
146
+ coords, labels = points
147
+ point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
148
+ sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
149
+ if boxes is not None:
150
+ box_embeddings = self._embed_boxes(boxes)
151
+ sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
152
+
153
+ if masks is not None:
154
+ dense_embeddings = self._embed_masks(masks)
155
+ else:
156
+ dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
157
+ bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
158
+ )
159
+
160
+ return sparse_embeddings, dense_embeddings
161
+
162
+
163
+ class PositionEmbeddingRandom(nn.Module):
164
+ """
165
+ Positional encoding using random spatial frequencies.
166
+ """
167
+
168
+ def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
169
+ super().__init__()
170
+ if scale is None or scale <= 0.0:
171
+ scale = 1.0
172
+ self.register_buffer(
173
+ "positional_encoding_gaussian_matrix",
174
+ scale * torch.randn((2, num_pos_feats)),
175
+ )
176
+
177
+ def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
178
+ """Positionally encode points that are normalized to [0,1]."""
179
+ # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
180
+ coords = 2 * coords - 1
181
+ coords = coords @ self.positional_encoding_gaussian_matrix
182
+ coords = 2 * np.pi * coords
183
+ # outputs d_1 x ... x d_n x C shape
184
+ return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
185
+
186
+ def forward(self, size: Tuple[int, int]) -> torch.Tensor:
187
+ """Generate positional encoding for a grid of the specified size."""
188
+ h, w = size
189
+ device: Any = self.positional_encoding_gaussian_matrix.device
190
+ grid = torch.ones((h, w), device=device, dtype=torch.float32)
191
+ y_embed = grid.cumsum(dim=0) - 0.5
192
+ x_embed = grid.cumsum(dim=1) - 0.5
193
+ y_embed = y_embed / h
194
+ x_embed = x_embed / w
195
+
196
+ pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
197
+ return pe.permute(2, 0, 1) # C x H x W
198
+
199
+ def forward_with_coords(
200
+ self, coords_input: torch.Tensor, image_size: Tuple[int, int]
201
+ ) -> torch.Tensor:
202
+ """Positionally encode points that are not normalized to [0,1]."""
203
+ coords = coords_input.clone()
204
+ coords[:, :, 0] = coords[:, :, 0] / image_size[1]
205
+ coords[:, :, 1] = coords[:, :, 1] / image_size[0]
206
+ return self._pe_encoding(coords.to(torch.float)) # B x N x C
207
+
208
+
209
+ class LayerNorm2d(nn.Module):
210
+ def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
211
+ super().__init__()
212
+ self.weight = nn.Parameter(torch.ones(num_channels))
213
+ self.bias = nn.Parameter(torch.zeros(num_channels))
214
+ self.eps = eps
215
+
216
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
217
+ u = x.mean(1, keepdim=True)
218
+ s = (x - u).pow(2).mean(1, keepdim=True)
219
+ x = (x - u) / torch.sqrt(s + self.eps)
220
+ x = self.weight[:, None, None] * x + self.bias[:, None, None]
221
+ return x
222
+
models/modules/utils.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+
3
+
4
+ def build_act_layer(act_layer):
5
+ if act_layer == 'ReLU':
6
+ return nn.ReLU(inplace=True)
7
+ elif act_layer == 'SiLU':
8
+ return nn.SiLU(inplace=True)
9
+ elif act_layer == 'GELU':
10
+ return nn.GELU()
11
+
12
+ raise NotImplementedError(f'build_act_layer does not support {act_layer}')
13
+
14
+
15
+ def build_norm_layer(dim,
16
+ norm_layer,
17
+ in_format='channels_last',
18
+ out_format='channels_last',
19
+ eps=1e-6):
20
+ layers = []
21
+ if norm_layer == 'BN':
22
+ if in_format == 'channels_last':
23
+ layers.append(to_channels_first())
24
+ layers.append(nn.BatchNorm2d(dim))
25
+ if out_format == 'channels_last':
26
+ layers.append(to_channels_last())
27
+ elif norm_layer == 'LN':
28
+ if in_format == 'channels_first':
29
+ layers.append(to_channels_last())
30
+ layers.append(nn.LayerNorm(dim, eps=eps))
31
+ if out_format == 'channels_first':
32
+ layers.append(to_channels_first())
33
+ else:
34
+ raise NotImplementedError(
35
+ f'build_norm_layer does not support {norm_layer}')
36
+ return nn.Sequential(*layers)
37
+
38
+
39
+ class to_channels_first(nn.Module):
40
+
41
+ def __init__(self):
42
+ super().__init__()
43
+
44
+ def forward(self, x):
45
+ return x.permute(0, 3, 1, 2)
46
+
47
+
48
+ class to_channels_last(nn.Module):
49
+
50
+ def __init__(self):
51
+ super().__init__()
52
+
53
+ def forward(self, x):
54
+ return x.permute(0, 2, 3, 1)
models/refinement/__pycache__/refiner.cpython-311.pyc ADDED
Binary file (14.7 kB). View file
 
models/refinement/__pycache__/stem_layer.cpython-311.pyc ADDED
Binary file (2.28 kB). View file
 
models/refinement/refiner.py ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from collections import OrderedDict
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+ from torchvision.models import vgg16, vgg16_bn
8
+ from torchvision.models import resnet50
9
+
10
+ from models.config import Config
11
+ from models.dataset import class_labels_TR_sorted
12
+ from models.backbones.build_backbone import build_backbone
13
+ from models.modules.decoder_blocks import BasicDecBlk
14
+ from models.modules.lateral_blocks import BasicLatBlk
15
+ from models.refinement.stem_layer import StemLayer
16
+
17
+
18
+ class RefinerPVTInChannels4(nn.Module):
19
+ def __init__(self, in_channels=3+1):
20
+ super(RefinerPVTInChannels4, self).__init__()
21
+ self.config = Config()
22
+ self.epoch = 1
23
+ self.bb = build_backbone(self.config.bb, params_settings='in_channels=4')
24
+
25
+ lateral_channels_in_collection = {
26
+ 'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
27
+ 'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
28
+ 'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
29
+ }
30
+ channels = lateral_channels_in_collection[self.config.bb]
31
+ self.squeeze_module = BasicDecBlk(channels[0], channels[0])
32
+
33
+ self.decoder = Decoder(channels)
34
+
35
+ if 0:
36
+ for key, value in self.named_parameters():
37
+ if 'bb.' in key:
38
+ value.requires_grad = False
39
+
40
+ def forward(self, x):
41
+ if isinstance(x, list):
42
+ x = torch.cat(x, dim=1)
43
+ ########## Encoder ##########
44
+ if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
45
+ x1 = self.bb.conv1(x)
46
+ x2 = self.bb.conv2(x1)
47
+ x3 = self.bb.conv3(x2)
48
+ x4 = self.bb.conv4(x3)
49
+ else:
50
+ x1, x2, x3, x4 = self.bb(x)
51
+
52
+ x4 = self.squeeze_module(x4)
53
+
54
+ ########## Decoder ##########
55
+
56
+ features = [x, x1, x2, x3, x4]
57
+ scaled_preds = self.decoder(features)
58
+
59
+ return scaled_preds
60
+
61
+
62
+ class Refiner(nn.Module):
63
+ def __init__(self, in_channels=3+1):
64
+ super(Refiner, self).__init__()
65
+ self.config = Config()
66
+ self.epoch = 1
67
+ self.stem_layer = StemLayer(in_channels=in_channels, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN')
68
+ self.bb = build_backbone(self.config.bb)
69
+
70
+ lateral_channels_in_collection = {
71
+ 'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
72
+ 'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
73
+ 'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
74
+ }
75
+ channels = lateral_channels_in_collection[self.config.bb]
76
+ self.squeeze_module = BasicDecBlk(channels[0], channels[0])
77
+
78
+ self.decoder = Decoder(channels)
79
+
80
+ if 0:
81
+ for key, value in self.named_parameters():
82
+ if 'bb.' in key:
83
+ value.requires_grad = False
84
+
85
+ def forward(self, x):
86
+ if isinstance(x, list):
87
+ x = torch.cat(x, dim=1)
88
+ x = self.stem_layer(x)
89
+ ########## Encoder ##########
90
+ if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
91
+ x1 = self.bb.conv1(x)
92
+ x2 = self.bb.conv2(x1)
93
+ x3 = self.bb.conv3(x2)
94
+ x4 = self.bb.conv4(x3)
95
+ else:
96
+ x1, x2, x3, x4 = self.bb(x)
97
+
98
+ x4 = self.squeeze_module(x4)
99
+
100
+ ########## Decoder ##########
101
+
102
+ features = [x, x1, x2, x3, x4]
103
+ scaled_preds = self.decoder(features)
104
+
105
+ return scaled_preds
106
+
107
+
108
+ class Decoder(nn.Module):
109
+ def __init__(self, channels):
110
+ super(Decoder, self).__init__()
111
+ self.config = Config()
112
+ DecoderBlock = eval('BasicDecBlk')
113
+ LateralBlock = eval('BasicLatBlk')
114
+
115
+ self.decoder_block4 = DecoderBlock(channels[0], channels[1])
116
+ self.decoder_block3 = DecoderBlock(channels[1], channels[2])
117
+ self.decoder_block2 = DecoderBlock(channels[2], channels[3])
118
+ self.decoder_block1 = DecoderBlock(channels[3], channels[3]//2)
119
+
120
+ self.lateral_block4 = LateralBlock(channels[1], channels[1])
121
+ self.lateral_block3 = LateralBlock(channels[2], channels[2])
122
+ self.lateral_block2 = LateralBlock(channels[3], channels[3])
123
+
124
+ if self.config.ms_supervision:
125
+ self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
126
+ self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
127
+ self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
128
+ self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2, 1, 1, 1, 0))
129
+
130
+ def forward(self, features):
131
+ x, x1, x2, x3, x4 = features
132
+ outs = []
133
+ p4 = self.decoder_block4(x4)
134
+ _p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
135
+ _p3 = _p4 + self.lateral_block4(x3)
136
+
137
+ p3 = self.decoder_block3(_p3)
138
+ _p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
139
+ _p2 = _p3 + self.lateral_block3(x2)
140
+
141
+ p2 = self.decoder_block2(_p2)
142
+ _p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
143
+ _p1 = _p2 + self.lateral_block2(x1)
144
+
145
+ _p1 = self.decoder_block1(_p1)
146
+ _p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
147
+ p1_out = self.conv_out1(_p1)
148
+
149
+ if self.config.ms_supervision:
150
+ outs.append(self.conv_ms_spvn_4(p4))
151
+ outs.append(self.conv_ms_spvn_3(p3))
152
+ outs.append(self.conv_ms_spvn_2(p2))
153
+ outs.append(p1_out)
154
+ return outs
155
+
156
+
157
+ class RefUNet(nn.Module):
158
+ # Refinement
159
+ def __init__(self, in_channels=3+1):
160
+ super(RefUNet, self).__init__()
161
+ self.encoder_1 = nn.Sequential(
162
+ nn.Conv2d(in_channels, 64, 3, 1, 1),
163
+ nn.Conv2d(64, 64, 3, 1, 1),
164
+ nn.BatchNorm2d(64),
165
+ nn.ReLU(inplace=True)
166
+ )
167
+
168
+ self.encoder_2 = nn.Sequential(
169
+ nn.MaxPool2d(2, 2, ceil_mode=True),
170
+ nn.Conv2d(64, 64, 3, 1, 1),
171
+ nn.BatchNorm2d(64),
172
+ nn.ReLU(inplace=True)
173
+ )
174
+
175
+ self.encoder_3 = nn.Sequential(
176
+ nn.MaxPool2d(2, 2, ceil_mode=True),
177
+ nn.Conv2d(64, 64, 3, 1, 1),
178
+ nn.BatchNorm2d(64),
179
+ nn.ReLU(inplace=True)
180
+ )
181
+
182
+ self.encoder_4 = nn.Sequential(
183
+ nn.MaxPool2d(2, 2, ceil_mode=True),
184
+ nn.Conv2d(64, 64, 3, 1, 1),
185
+ nn.BatchNorm2d(64),
186
+ nn.ReLU(inplace=True)
187
+ )
188
+
189
+ self.pool4 = nn.MaxPool2d(2, 2, ceil_mode=True)
190
+ #####
191
+ self.decoder_5 = nn.Sequential(
192
+ nn.Conv2d(64, 64, 3, 1, 1),
193
+ nn.BatchNorm2d(64),
194
+ nn.ReLU(inplace=True)
195
+ )
196
+ #####
197
+ self.decoder_4 = nn.Sequential(
198
+ nn.Conv2d(128, 64, 3, 1, 1),
199
+ nn.BatchNorm2d(64),
200
+ nn.ReLU(inplace=True)
201
+ )
202
+
203
+ self.decoder_3 = nn.Sequential(
204
+ nn.Conv2d(128, 64, 3, 1, 1),
205
+ nn.BatchNorm2d(64),
206
+ nn.ReLU(inplace=True)
207
+ )
208
+
209
+ self.decoder_2 = nn.Sequential(
210
+ nn.Conv2d(128, 64, 3, 1, 1),
211
+ nn.BatchNorm2d(64),
212
+ nn.ReLU(inplace=True)
213
+ )
214
+
215
+ self.decoder_1 = nn.Sequential(
216
+ nn.Conv2d(128, 64, 3, 1, 1),
217
+ nn.BatchNorm2d(64),
218
+ nn.ReLU(inplace=True)
219
+ )
220
+
221
+ self.conv_d0 = nn.Conv2d(64, 1, 3, 1, 1)
222
+
223
+ self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
224
+
225
+ def forward(self, x):
226
+ outs = []
227
+ if isinstance(x, list):
228
+ x = torch.cat(x, dim=1)
229
+ hx = x
230
+
231
+ hx1 = self.encoder_1(hx)
232
+ hx2 = self.encoder_2(hx1)
233
+ hx3 = self.encoder_3(hx2)
234
+ hx4 = self.encoder_4(hx3)
235
+
236
+ hx = self.decoder_5(self.pool4(hx4))
237
+ hx = torch.cat((self.upscore2(hx), hx4), 1)
238
+
239
+ d4 = self.decoder_4(hx)
240
+ hx = torch.cat((self.upscore2(d4), hx3), 1)
241
+
242
+ d3 = self.decoder_3(hx)
243
+ hx = torch.cat((self.upscore2(d3), hx2), 1)
244
+
245
+ d2 = self.decoder_2(hx)
246
+ hx = torch.cat((self.upscore2(d2), hx1), 1)
247
+
248
+ d1 = self.decoder_1(hx)
249
+
250
+ x = self.conv_d0(d1)
251
+ outs.append(x)
252
+ return outs
models/refinement/stem_layer.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ from models.modules.utils import build_act_layer, build_norm_layer
3
+
4
+
5
+ class StemLayer(nn.Module):
6
+ r""" Stem layer of InternImage
7
+ Args:
8
+ in_channels (int): number of input channels
9
+ out_channels (int): number of output channels
10
+ act_layer (str): activation layer
11
+ norm_layer (str): normalization layer
12
+ """
13
+
14
+ def __init__(self,
15
+ in_channels=3+1,
16
+ inter_channels=48,
17
+ out_channels=96,
18
+ act_layer='GELU',
19
+ norm_layer='BN'):
20
+ super().__init__()
21
+ self.conv1 = nn.Conv2d(in_channels,
22
+ inter_channels,
23
+ kernel_size=3,
24
+ stride=1,
25
+ padding=1)
26
+ self.norm1 = build_norm_layer(
27
+ inter_channels, norm_layer, 'channels_first', 'channels_first'
28
+ )
29
+ self.act = build_act_layer(act_layer)
30
+ self.conv2 = nn.Conv2d(inter_channels,
31
+ out_channels,
32
+ kernel_size=3,
33
+ stride=1,
34
+ padding=1)
35
+ self.norm2 = build_norm_layer(
36
+ out_channels, norm_layer, 'channels_first', 'channels_first'
37
+ )
38
+
39
+ def forward(self, x):
40
+ x = self.conv1(x)
41
+ x = self.norm1(x)
42
+ x = self.act(x)
43
+ x = self.conv2(x)
44
+ x = self.norm2(x)
45
+ return x
models/weights/yolo_finetuned.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4fad4c83ad081ae6e8ede9e25a870f480d4bccd33eaf511db37bf4c491108255
3
+ size 6773037
util/__pycache__/utils.cpython-311.pyc ADDED
Binary file (6.75 kB). View file
 
util/utils.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import os
3
+ import torch
4
+ from torchvision import transforms
5
+ import numpy as np
6
+ import random
7
+ import cv2
8
+ from PIL import Image
9
+
10
+
11
+ def path_to_image(path, size=(1024, 1024), color_type=['rgb', 'gray'][0]):
12
+ if color_type.lower() == 'rgb':
13
+ image = cv2.imread(path)
14
+ elif color_type.lower() == 'gray':
15
+ image = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
16
+ else:
17
+ print('Select the color_type to return, either to RGB or gray image.')
18
+ return
19
+ if size:
20
+ image = cv2.resize(image, size, interpolation=cv2.INTER_LINEAR)
21
+ if color_type.lower() == 'rgb':
22
+ image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)).convert('RGB')
23
+ else:
24
+ image = Image.fromarray(image).convert('L')
25
+ return image
26
+
27
+
28
+
29
+ def check_state_dict(state_dict, unwanted_prefix='_orig_mod.'):
30
+ for k, v in list(state_dict.items()):
31
+ if k.startswith(unwanted_prefix):
32
+ state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
33
+ return state_dict
34
+
35
+
36
+ def generate_smoothed_gt(gts):
37
+ epsilon = 0.001
38
+ new_gts = (1-epsilon)*gts+epsilon/2
39
+ return new_gts
40
+
41
+
42
+ class Logger():
43
+ def __init__(self, path="log.txt"):
44
+ self.logger = logging.getLogger('BiRefNet')
45
+ self.file_handler = logging.FileHandler(path, "w")
46
+ self.stdout_handler = logging.StreamHandler()
47
+ self.stdout_handler.setFormatter(logging.Formatter('%(asctime)s %(levelname)s %(message)s'))
48
+ self.file_handler.setFormatter(logging.Formatter('%(asctime)s %(levelname)s %(message)s'))
49
+ self.logger.addHandler(self.file_handler)
50
+ self.logger.addHandler(self.stdout_handler)
51
+ self.logger.setLevel(logging.INFO)
52
+ self.logger.propagate = False
53
+
54
+ def info(self, txt):
55
+ self.logger.info(txt)
56
+
57
+ def close(self):
58
+ self.file_handler.close()
59
+ self.stdout_handler.close()
60
+
61
+
62
+ class AverageMeter(object):
63
+ """Computes and stores the average and current value"""
64
+ def __init__(self):
65
+ self.reset()
66
+
67
+ def reset(self):
68
+ self.val = 0.0
69
+ self.avg = 0.0
70
+ self.sum = 0.0
71
+ self.count = 0.0
72
+
73
+ def update(self, val, n=1):
74
+ self.val = val
75
+ self.sum += val * n
76
+ self.count += n
77
+ self.avg = self.sum / self.count
78
+
79
+
80
+ def save_checkpoint(state, path, filename="latest.pth"):
81
+ torch.save(state, os.path.join(path, filename))
82
+
83
+
84
+ def save_tensor_img(tenor_im, path):
85
+ im = tenor_im.cpu().clone()
86
+ im = im.squeeze(0)
87
+ tensor2pil = transforms.ToPILImage()
88
+ im = tensor2pil(im)
89
+ im.save(path)
90
+
91
+
92
+ def set_seed(seed):
93
+ torch.manual_seed(seed)
94
+ torch.cuda.manual_seed_all(seed)
95
+ np.random.seed(seed)
96
+ random.seed(seed)
97
+ torch.backends.cudnn.deterministic = True