dgutierrez commited on
Commit
7350eb9
1 Parent(s): d119a8f

Upload 7 files

Browse files
Files changed (6) hide show
  1. Dockerfile +11 -0
  2. app.py +155 -0
  3. app_empty.py +132 -0
  4. chainlit.md +1 -0
  5. paul_graham_essays.txt +0 -0
  6. requirements.txt +100 -0
Dockerfile ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.9
2
+ RUN useradd -m -u 1000 user
3
+ USER user
4
+ ENV HOME=/home/user \
5
+ PATH=/home/user/.local/bin:$PATH
6
+ WORKDIR $HOME/app
7
+ COPY --chown=user . $HOME/app
8
+ COPY ./requirements.txt ~/app/requirements.txt
9
+ RUN pip install -r requirements.txt
10
+ COPY . .
11
+ CMD ["chainlit", "run", "app.py", "--port", "7860"]
app.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import chainlit as cl
3
+ from dotenv import load_dotenv
4
+ from operator import itemgetter
5
+ from langchain_huggingface import HuggingFaceEndpoint
6
+ from langchain_community.document_loaders import TextLoader
7
+ from langchain_text_splitters import RecursiveCharacterTextSplitter
8
+ from langchain_community.vectorstores import FAISS
9
+ from langchain_huggingface import HuggingFaceEndpointEmbeddings
10
+ from langchain_core.prompts import PromptTemplate
11
+ from langchain.schema.output_parser import StrOutputParser
12
+ from langchain.schema.runnable import RunnablePassthrough
13
+ from langchain.schema.runnable.config import RunnableConfig
14
+
15
+ # GLOBAL SCOPE - ENTIRE APPLICATION HAS ACCESS TO VALUES SET IN THIS SCOPE #
16
+ # ---- ENV VARIABLES ---- #
17
+ """
18
+ This function will load our environment file (.env) if it is present.
19
+
20
+ NOTE: Make sure that .env is in your .gitignore file - it is by default, but please ensure it remains there.
21
+ """
22
+ load_dotenv()
23
+
24
+ """
25
+ We will load our environment variables here.
26
+ """
27
+ HF_LLM_ENDPOINT = os.environ["HF_LLM_ENDPOINT"]
28
+ HF_EMBED_ENDPOINT = os.environ["HF_EMBED_ENDPOINT"]
29
+ HF_TOKEN = os.environ["HF_TOKEN"]
30
+
31
+ # ---- GLOBAL DECLARATIONS ---- #
32
+
33
+ # -- RETRIEVAL -- #
34
+ """
35
+ 1. Load Documents from Text File
36
+ 2. Split Documents into Chunks
37
+ 3. Load HuggingFace Embeddings (remember to use the URL we set above)
38
+ 4. Index Files if they do not exist, otherwise load the vectorstore
39
+ """
40
+ document_loader = TextLoader("./data/paul_graham_essays.txt")
41
+ documents = document_loader.load()
42
+
43
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=30)
44
+ split_documents = text_splitter.split_documents(documents)
45
+
46
+ hf_embeddings = HuggingFaceEndpointEmbeddings(
47
+ model=HF_EMBED_ENDPOINT,
48
+ task="feature-extraction",
49
+ huggingfacehub_api_token=HF_TOKEN,
50
+ )
51
+
52
+ if os.path.exists("./data/vectorstore"):
53
+ vectorstore = FAISS.load_local(
54
+ "./data/vectorstore",
55
+ hf_embeddings,
56
+ allow_dangerous_deserialization=True # this is necessary to load the vectorstore from disk as it's stored as a `.pkl` file.
57
+ )
58
+ hf_retriever = vectorstore.as_retriever()
59
+ print("Loaded Vectorstore")
60
+ else:
61
+ print("Indexing Files")
62
+ os.makedirs("./data/vectorstore", exist_ok=True)
63
+ for i in range(0, len(split_documents), 32):
64
+ if i == 0:
65
+ vectorstore = FAISS.from_documents(split_documents[i:i+32], hf_embeddings)
66
+ continue
67
+ vectorstore.add_documents(split_documents[i:i+32])
68
+ vectorstore.save_local("./data/vectorstore")
69
+
70
+ hf_retriever = vectorstore.as_retriever()
71
+
72
+ # -- AUGMENTED -- #
73
+ """
74
+ 1. Define a String Template
75
+ 2. Create a Prompt Template from the String Template
76
+ """
77
+ RAG_PROMPT_TEMPLATE = """\
78
+ <|start_header_id|>system<|end_header_id|>
79
+ You are a helpful assistant. You answer user questions based on provided context. If you can't answer the question with the provided context, say you don't know.<|eot_id|>
80
+
81
+ <|start_header_id|>user<|end_header_id|>
82
+ User Query:
83
+ {query}
84
+
85
+ Context:
86
+ {context}<|eot_id|>
87
+
88
+ <|start_header_id|>assistant<|end_header_id|>
89
+ """
90
+
91
+ rag_prompt = PromptTemplate.from_template(RAG_PROMPT_TEMPLATE)
92
+
93
+ # -- GENERATION -- #
94
+ """
95
+ 1. Create a HuggingFaceEndpoint for the LLM
96
+ """
97
+ hf_llm = HuggingFaceEndpoint(
98
+ endpoint_url=HF_LLM_ENDPOINT,
99
+ max_new_tokens=512,
100
+ top_k=10,
101
+ top_p=0.95,
102
+ temperature=0.3,
103
+ repetition_penalty=1.15,
104
+ huggingfacehub_api_token=HF_TOKEN,
105
+ )
106
+
107
+ @cl.author_rename
108
+ def rename(original_author: str):
109
+ """
110
+ This function can be used to rename the 'author' of a message.
111
+
112
+ In this case, we're overriding the 'Assistant' author to be 'Paul Graham Essay Bot'.
113
+ """
114
+ rename_dict = {
115
+ "Assistant" : "Paul Graham Essay Bot"
116
+ }
117
+ return rename_dict.get(original_author, original_author)
118
+
119
+ @cl.on_chat_start
120
+ async def start_chat():
121
+ """
122
+ This function will be called at the start of every user session.
123
+
124
+ We will build our LCEL RAG chain here, and store it in the user session.
125
+
126
+ The user session is a dictionary that is unique to each user session, and is stored in the memory of the server.
127
+ """
128
+
129
+ lcel_rag_chain = (
130
+ {"context": itemgetter("query") | hf_retriever, "query": itemgetter("query")}
131
+ | rag_prompt | hf_llm
132
+ )
133
+
134
+ cl.user_session.set("lcel_rag_chain", lcel_rag_chain)
135
+
136
+ @cl.on_message
137
+ async def main(message: cl.Message):
138
+ """
139
+ This function will be called every time a message is recieved from a session.
140
+
141
+ We will use the LCEL RAG chain to generate a response to the user query.
142
+
143
+ The LCEL RAG chain is stored in the user session, and is unique to each user session - this is why we can access it here.
144
+ """
145
+ lcel_rag_chain = cl.user_session.get("lcel_rag_chain")
146
+
147
+ msg = cl.Message(content="")
148
+
149
+ for chunk in await cl.make_async(lcel_rag_chain.stream)(
150
+ {"query": message.content},
151
+ config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
152
+ ):
153
+ await msg.stream_token(chunk)
154
+
155
+ await msg.send()
app_empty.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import chainlit as cl
3
+ from dotenv import load_dotenv
4
+ from operator import itemgetter
5
+ from langchain_huggingface import HuggingFaceEndpoint
6
+ from langchain_community.document_loaders import TextLoader
7
+ from langchain_text_splitters import RecursiveCharacterTextSplitter
8
+ from langchain_community.vectorstores import FAISS
9
+ from langchain_huggingface import HuggingFaceEndpointEmbeddings
10
+ from langchain_core.prompts import PromptTemplate
11
+ from langchain.schema.output_parser import StrOutputParser
12
+ from langchain.schema.runnable import RunnablePassthrough
13
+ from langchain.schema.runnable.config import RunnableConfig
14
+
15
+ # GLOBAL SCOPE - ENTIRE APPLICATION HAS ACCESS TO VALUES SET IN THIS SCOPE #
16
+ # ---- ENV VARIABLES ---- #
17
+ """
18
+ This function will load our environment file (.env) if it is present.
19
+
20
+ NOTE: Make sure that .env is in your .gitignore file - it is by default, but please ensure it remains there.
21
+ """
22
+ load_dotenv()
23
+
24
+ """
25
+ We will load our environment variables here.
26
+ """
27
+ HF_LLM_ENDPOINT = os.environ["HF_LLM_ENDPOINT"]
28
+ HF_EMBED_ENDPOINT = os.environ["HF_EMBED_ENDPOINT"]
29
+ HF_TOKEN = os.environ["HF_TOKEN"]
30
+
31
+ # ---- GLOBAL DECLARATIONS ---- #
32
+
33
+ # -- RETRIEVAL -- #
34
+ """
35
+ 1. Load Documents from Text File
36
+ 2. Split Documents into Chunks
37
+ 3. Load HuggingFace Embeddings (remember to use the URL we set above)
38
+ 4. Index Files if they do not exist, otherwise load the vectorstore
39
+ """
40
+ ### 1. CREATE TEXT LOADER AND LOAD DOCUMENTS
41
+ ### NOTE: PAY ATTENTION TO THE PATH THEY ARE IN.
42
+ text_loader =
43
+ documents =
44
+
45
+ ### 2. CREATE TEXT SPLITTER AND SPLIT DOCUMENTS
46
+ text_splitter =
47
+ split_documents =
48
+
49
+ ### 3. LOAD HUGGINGFACE EMBEDDINGS
50
+ hf_embeddings =
51
+
52
+ if os.path.exists("./data/vectorstore"):
53
+ vectorstore = FAISS.load_local(
54
+ "./data/vectorstore",
55
+ hf_embeddings,
56
+ allow_dangerous_deserialization=True # this is necessary to load the vectorstore from disk as it's stored as a `.pkl` file.
57
+ )
58
+ hf_retriever = vectorstore.as_retriever()
59
+ print("Loaded Vectorstore")
60
+ else:
61
+ print("Indexing Files")
62
+ os.makedirs("./data/vectorstore", exist_ok=True)
63
+ ### 4. INDEX FILES
64
+ ### NOTE: REMEMBER TO BATCH THE DOCUMENTS WITH MAXIMUM BATCH SIZE = 32
65
+
66
+ hf_retriever = vectorstore.as_retriever()
67
+
68
+ # -- AUGMENTED -- #
69
+ """
70
+ 1. Define a String Template
71
+ 2. Create a Prompt Template from the String Template
72
+ """
73
+ ### 1. DEFINE STRING TEMPLATE
74
+ RAG_PROMPT_TEMPLATE =
75
+
76
+ ### 2. CREATE PROMPT TEMPLATE
77
+ rag_prompt =
78
+
79
+ # -- GENERATION -- #
80
+ """
81
+ 1. Create a HuggingFaceEndpoint for the LLM
82
+ """
83
+ ### 1. CREATE HUGGINGFACE ENDPOINT FOR LLM
84
+ hf_llm =
85
+
86
+ @cl.author_rename
87
+ def rename(original_author: str):
88
+ """
89
+ This function can be used to rename the 'author' of a message.
90
+
91
+ In this case, we're overriding the 'Assistant' author to be 'Paul Graham Essay Bot'.
92
+ """
93
+ rename_dict = {
94
+ "Assistant" : "Paul Graham Essay Bot"
95
+ }
96
+ return rename_dict.get(original_author, original_author)
97
+
98
+ @cl.on_chat_start
99
+ async def start_chat():
100
+ """
101
+ This function will be called at the start of every user session.
102
+
103
+ We will build our LCEL RAG chain here, and store it in the user session.
104
+
105
+ The user session is a dictionary that is unique to each user session, and is stored in the memory of the server.
106
+ """
107
+
108
+ ### BUILD LCEL RAG CHAIN THAT ONLY RETURNS TEXT
109
+ lcel_rag_chain =
110
+
111
+ cl.user_session.set("lcel_rag_chain", lcel_rag_chain)
112
+
113
+ @cl.on_message
114
+ async def main(message: cl.Message):
115
+ """
116
+ This function will be called every time a message is recieved from a session.
117
+
118
+ We will use the LCEL RAG chain to generate a response to the user query.
119
+
120
+ The LCEL RAG chain is stored in the user session, and is unique to each user session - this is why we can access it here.
121
+ """
122
+ lcel_rag_chain = cl.user_session.get("lcel_rag_chain")
123
+
124
+ msg = cl.Message(content="")
125
+
126
+ async for chunk in lcel_rag_chain.astream(
127
+ {"query": message.content},
128
+ config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
129
+ ):
130
+ await msg.stream_token(chunk)
131
+
132
+ await msg.send()
chainlit.md ADDED
@@ -0,0 +1 @@
 
 
1
+ # FILL OUT YOUR CHAINLIT MD HERE WITH A DESCRIPTION OF YOUR APPLICATION
paul_graham_essays.txt ADDED
The diff for this file is too large to render. See raw diff
 
requirements.txt ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ aiofiles==23.2.1
2
+ aiohappyeyeballs==2.4.3
3
+ aiohttp==3.10.8
4
+ aiosignal==1.3.1
5
+ annotated-types==0.7.0
6
+ anyio==3.7.1
7
+ async-timeout==4.0.3
8
+ asyncer==0.0.2
9
+ attrs==24.2.0
10
+ bidict==0.23.1
11
+ certifi==2024.8.30
12
+ chainlit==0.7.700
13
+ charset-normalizer==3.3.2
14
+ click==8.1.7
15
+ dataclasses-json==0.5.14
16
+ langchain_huggingface==0.0.3
17
+ Deprecated==1.2.14
18
+ distro==1.9.0
19
+ exceptiongroup==1.2.2
20
+ fastapi==0.100.1
21
+ fastapi-socketio==0.0.10
22
+ filetype==1.2.0
23
+ frozenlist==1.4.1
24
+ googleapis-common-protos==1.65.0
25
+ greenlet==3.1.1
26
+ grpcio==1.66.2
27
+ grpcio-tools==1.62.3
28
+ h11==0.14.0
29
+ h2==4.1.0
30
+ hpack==4.0.0
31
+ httpcore==0.17.3
32
+ httpx==0.24.1
33
+ hyperframe==6.0.1
34
+ idna==3.10
35
+ importlib_metadata==8.4.0
36
+ jiter==0.5.0
37
+ jsonpatch==1.33
38
+ jsonpointer==3.0.0
39
+ langchain==0.3.0
40
+ langchain-community==0.3.0
41
+ langchain-core==0.3.1
42
+ langchain-openai==0.2.0
43
+ langchain-qdrant==0.1.4
44
+ langchain-text-splitters==0.3.0
45
+ langsmith==0.1.121
46
+ Lazify==0.4.0
47
+ marshmallow==3.22.0
48
+ multidict==6.1.0
49
+ mypy-extensions==1.0.0
50
+ nest-asyncio==1.6.0
51
+ numpy==1.26.4
52
+ openai==1.51.0
53
+ opentelemetry-api==1.27.0
54
+ opentelemetry-exporter-otlp==1.27.0
55
+ opentelemetry-exporter-otlp-proto-common==1.27.0
56
+ opentelemetry-exporter-otlp-proto-grpc==1.27.0
57
+ opentelemetry-exporter-otlp-proto-http==1.27.0
58
+ opentelemetry-instrumentation==0.48b0
59
+ opentelemetry-proto==1.27.0
60
+ opentelemetry-sdk==1.27.0
61
+ opentelemetry-semantic-conventions==0.48b0
62
+ orjson==3.10.7
63
+ packaging==23.2
64
+ portalocker==2.10.1
65
+ protobuf==4.25.5
66
+ pydantic==2.9.2
67
+ pydantic-settings==2.5.2
68
+ pydantic_core==2.23.4
69
+ PyJWT==2.9.0
70
+ PyMuPDF==1.24.10
71
+ PyMuPDFb==1.24.10
72
+ python-dotenv==1.0.1
73
+ python-engineio==4.9.1
74
+ python-graphql-client==0.4.3
75
+ python-multipart==0.0.6
76
+ python-socketio==5.11.4
77
+ PyYAML==6.0.2
78
+ qdrant-client==1.11.2
79
+ regex==2024.9.11
80
+ requests==2.32.3
81
+ simple-websocket==1.0.0
82
+ sniffio==1.3.1
83
+ SQLAlchemy==2.0.35
84
+ starlette==0.27.0
85
+ syncer==2.0.3
86
+ tenacity==8.5.0
87
+ tiktoken==0.7.0
88
+ tomli==2.0.1
89
+ tqdm==4.66.5
90
+ typing-inspect==0.9.0
91
+ typing_extensions==4.12.2
92
+ uptrace==1.26.0
93
+ urllib3==2.2.3
94
+ uvicorn==0.23.2
95
+ watchfiles==0.20.0
96
+ websockets==13.1
97
+ wrapt==1.16.0
98
+ wsproto==1.2.0
99
+ yarl==1.13.1
100
+ zipp==3.20.2