Spaces:
Sleeping
Sleeping
dgutierrez
commited on
Commit
·
cc17218
1
Parent(s):
e67d4b1
added pdf
Browse files- aimakerspace/text_utils.py +27 -10
- app.py +34 -13
aimakerspace/text_utils.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import os
|
2 |
from typing import List
|
|
|
3 |
|
4 |
|
5 |
class TextFileLoader:
|
@@ -11,25 +12,40 @@ class TextFileLoader:
|
|
11 |
def load(self):
|
12 |
if os.path.isdir(self.path):
|
13 |
self.load_directory()
|
14 |
-
elif os.path.isfile(self.path)
|
15 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
16 |
else:
|
17 |
-
raise ValueError(
|
18 |
-
"Provided path is neither a valid directory nor a .txt file."
|
19 |
-
)
|
20 |
|
21 |
def load_file(self):
|
22 |
with open(self.path, "r", encoding=self.encoding) as f:
|
23 |
self.documents.append(f.read())
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def load_directory(self):
|
26 |
for root, _, files in os.walk(self.path):
|
27 |
for file in files:
|
|
|
28 |
if file.endswith(".txt"):
|
29 |
-
with open(
|
30 |
-
os.path.join(root, file), "r", encoding=self.encoding
|
31 |
-
) as f:
|
32 |
self.documents.append(f.read())
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
def load_documents(self):
|
35 |
self.load()
|
@@ -52,7 +68,7 @@ class CharacterTextSplitter:
|
|
52 |
def split(self, text: str) -> List[str]:
|
53 |
chunks = []
|
54 |
for i in range(0, len(text), self.chunk_size - self.chunk_overlap):
|
55 |
-
chunks.append(text[i
|
56 |
return chunks
|
57 |
|
58 |
def split_texts(self, texts: List[str]) -> List[str]:
|
@@ -63,7 +79,8 @@ class CharacterTextSplitter:
|
|
63 |
|
64 |
|
65 |
if __name__ == "__main__":
|
66 |
-
|
|
|
67 |
loader.load()
|
68 |
splitter = CharacterTextSplitter()
|
69 |
chunks = splitter.split_texts(loader.documents)
|
|
|
1 |
import os
|
2 |
from typing import List
|
3 |
+
import fitz # PyMuPDF
|
4 |
|
5 |
|
6 |
class TextFileLoader:
|
|
|
12 |
def load(self):
|
13 |
if os.path.isdir(self.path):
|
14 |
self.load_directory()
|
15 |
+
elif os.path.isfile(self.path):
|
16 |
+
if self.path.endswith(".txt"):
|
17 |
+
self.load_file()
|
18 |
+
elif self.path.endswith(".pdf"):
|
19 |
+
self.load_pdf()
|
20 |
+
else:
|
21 |
+
raise ValueError("Unsupported file type. Only .txt and .pdf files are supported.")
|
22 |
else:
|
23 |
+
raise ValueError("Provided path is neither a valid directory nor a file.")
|
|
|
|
|
24 |
|
25 |
def load_file(self):
|
26 |
with open(self.path, "r", encoding=self.encoding) as f:
|
27 |
self.documents.append(f.read())
|
28 |
|
29 |
+
def load_pdf(self):
|
30 |
+
with fitz.open(self.path) as doc:
|
31 |
+
text = ""
|
32 |
+
for page in doc:
|
33 |
+
text += page.get_text("text")
|
34 |
+
self.documents.append(text)
|
35 |
+
|
36 |
def load_directory(self):
|
37 |
for root, _, files in os.walk(self.path):
|
38 |
for file in files:
|
39 |
+
file_path = os.path.join(root, file)
|
40 |
if file.endswith(".txt"):
|
41 |
+
with open(file_path, "r", encoding=self.encoding) as f:
|
|
|
|
|
42 |
self.documents.append(f.read())
|
43 |
+
elif file.endswith(".pdf"):
|
44 |
+
with fitz.open(file_path) as doc:
|
45 |
+
text = ""
|
46 |
+
for page in doc:
|
47 |
+
text += page.get_text("text")
|
48 |
+
self.documents.append(text)
|
49 |
|
50 |
def load_documents(self):
|
51 |
self.load()
|
|
|
68 |
def split(self, text: str) -> List[str]:
|
69 |
chunks = []
|
70 |
for i in range(0, len(text), self.chunk_size - self.chunk_overlap):
|
71 |
+
chunks.append(text[i: i + self.chunk_size])
|
72 |
return chunks
|
73 |
|
74 |
def split_texts(self, texts: List[str]) -> List[str]:
|
|
|
79 |
|
80 |
|
81 |
if __name__ == "__main__":
|
82 |
+
# Example usage with a PDF file
|
83 |
+
loader = TextFileLoader("data/sample.pdf")
|
84 |
loader.load()
|
85 |
splitter = CharacterTextSplitter()
|
86 |
chunks = splitter.split_texts(loader.documents)
|
app.py
CHANGED
@@ -11,9 +11,10 @@ from aimakerspace.openai_utils.embedding import EmbeddingModel
|
|
11 |
from aimakerspace.vectordatabase import VectorDatabase
|
12 |
from aimakerspace.openai_utils.chatmodel import ChatOpenAI
|
13 |
import chainlit as cl
|
|
|
14 |
|
15 |
system_template = """\
|
16 |
-
Use the following context to answer a
|
17 |
system_role_prompt = SystemRolePrompt(system_template)
|
18 |
|
19 |
user_prompt_template = """\
|
@@ -49,18 +50,38 @@ class RetrievalAugmentedQAPipeline:
|
|
49 |
|
50 |
text_splitter = CharacterTextSplitter()
|
51 |
|
52 |
-
|
53 |
def process_text_file(file: AskFileResponse):
|
54 |
import tempfile
|
55 |
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
text_loader = TextFileLoader(temp_file_path)
|
63 |
-
documents = text_loader.load_documents()
|
64 |
texts = text_splitter.split_texts(documents)
|
65 |
return texts
|
66 |
|
@@ -70,10 +91,10 @@ async def on_chat_start():
|
|
70 |
files = None
|
71 |
|
72 |
# Wait for the user to upload a file
|
73 |
-
while files
|
74 |
files = await cl.AskFileMessage(
|
75 |
-
content="Please upload a Text File
|
76 |
-
accept=["text/plain"],
|
77 |
max_size_mb=2,
|
78 |
timeout=180,
|
79 |
).send()
|
@@ -85,7 +106,7 @@ async def on_chat_start():
|
|
85 |
)
|
86 |
await msg.send()
|
87 |
|
88 |
-
#
|
89 |
texts = process_text_file(file)
|
90 |
|
91 |
print(f"Processing {len(texts)} text chunks")
|
@@ -119,4 +140,4 @@ async def main(message):
|
|
119 |
async for stream_resp in result["response"]:
|
120 |
await msg.stream_token(stream_resp)
|
121 |
|
122 |
-
await msg.send()
|
|
|
11 |
from aimakerspace.vectordatabase import VectorDatabase
|
12 |
from aimakerspace.openai_utils.chatmodel import ChatOpenAI
|
13 |
import chainlit as cl
|
14 |
+
import fitz # PyMuPDF for PDF reading
|
15 |
|
16 |
system_template = """\
|
17 |
+
Use the following context to answer a user's question. If you cannot find the answer in the context, say you don't know the answer."""
|
18 |
system_role_prompt = SystemRolePrompt(system_template)
|
19 |
|
20 |
user_prompt_template = """\
|
|
|
50 |
|
51 |
text_splitter = CharacterTextSplitter()
|
52 |
|
|
|
53 |
def process_text_file(file: AskFileResponse):
|
54 |
import tempfile
|
55 |
|
56 |
+
file_extension = os.path.splitext(file.name)[-1].lower()
|
57 |
+
|
58 |
+
if file_extension == ".txt":
|
59 |
+
with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".txt") as temp_file:
|
60 |
+
temp_file_path = temp_file.name
|
61 |
+
|
62 |
+
with open(temp_file_path, "wb") as f:
|
63 |
+
f.write(file.content)
|
64 |
+
|
65 |
+
text_loader = TextFileLoader(temp_file_path)
|
66 |
+
documents = text_loader.load_documents()
|
67 |
|
68 |
+
elif file_extension == ".pdf":
|
69 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
|
70 |
+
temp_file_path = temp_file.name
|
71 |
+
|
72 |
+
with open(temp_file_path, "wb") as f:
|
73 |
+
f.write(file.content)
|
74 |
+
|
75 |
+
documents = []
|
76 |
+
with fitz.open(temp_file_path) as doc:
|
77 |
+
text = ""
|
78 |
+
for page in doc:
|
79 |
+
text += page.get_text("text")
|
80 |
+
documents.append(text)
|
81 |
+
|
82 |
+
else:
|
83 |
+
raise ValueError("Unsupported file type. Please upload a .txt or .pdf file.")
|
84 |
|
|
|
|
|
85 |
texts = text_splitter.split_texts(documents)
|
86 |
return texts
|
87 |
|
|
|
91 |
files = None
|
92 |
|
93 |
# Wait for the user to upload a file
|
94 |
+
while files is None:
|
95 |
files = await cl.AskFileMessage(
|
96 |
+
content="Please upload a Text File or PDF to begin!",
|
97 |
+
accept=["text/plain", "application/pdf"],
|
98 |
max_size_mb=2,
|
99 |
timeout=180,
|
100 |
).send()
|
|
|
106 |
)
|
107 |
await msg.send()
|
108 |
|
109 |
+
# Load the file
|
110 |
texts = process_text_file(file)
|
111 |
|
112 |
print(f"Processing {len(texts)} text chunks")
|
|
|
140 |
async for stream_resp in result["response"]:
|
141 |
await msg.stream_token(stream_resp)
|
142 |
|
143 |
+
await msg.send()
|