Spaces:
Running
on
Zero
Running
on
Zero
suisuyy
commited on
Commit
·
7233e3e
1
Parent(s):
c8a6daa
complete
Browse files- __pycache__/app.cpython-310.pyc +0 -0
- app.py +47 -98
- audio_sample/onetoeight.mp3 +0 -0
- audio_sample/onetofive_enjpzh.mp3 +0 -0
- requirements.txt +1 -0
__pycache__/app.cpython-310.pyc
ADDED
Binary file (2.71 kB). View file
|
|
app.py
CHANGED
@@ -1,93 +1,50 @@
|
|
1 |
import torch
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
import spaces
|
5 |
-
import yt_dlp as youtube_dl
|
6 |
from transformers import pipeline
|
7 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
8 |
|
9 |
-
|
10 |
-
import os
|
11 |
|
12 |
-
MODEL_NAME = "openai/whisper-large-v3"
|
13 |
BATCH_SIZE = 8
|
14 |
-
FILE_LIMIT_MB = 1000
|
15 |
-
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
16 |
|
17 |
device = 0 if torch.cuda.is_available() else "cpu"
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
25 |
|
26 |
@spaces.GPU
|
27 |
-
def transcribe(inputs, task):
|
28 |
if inputs is None:
|
29 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
30 |
|
|
|
|
|
|
|
|
|
|
|
31 |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
32 |
-
|
33 |
|
|
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
f
|
39 |
-
"
|
40 |
)
|
41 |
-
return HTML_str
|
42 |
-
|
43 |
-
def download_yt_audio(yt_url, filename):
|
44 |
-
info_loader = youtube_dl.YoutubeDL()
|
45 |
-
|
46 |
-
try:
|
47 |
-
info = info_loader.extract_info(yt_url, download=False)
|
48 |
-
except youtube_dl.utils.DownloadError as err:
|
49 |
-
raise gr.Error(str(err))
|
50 |
-
|
51 |
-
file_length = info["duration_string"]
|
52 |
-
file_h_m_s = file_length.split(":")
|
53 |
-
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
|
54 |
-
|
55 |
-
if len(file_h_m_s) == 1:
|
56 |
-
file_h_m_s.insert(0, 0)
|
57 |
-
if len(file_h_m_s) == 2:
|
58 |
-
file_h_m_s.insert(0, 0)
|
59 |
-
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
60 |
-
|
61 |
-
if file_length_s > YT_LENGTH_LIMIT_S:
|
62 |
-
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
63 |
-
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
64 |
-
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
65 |
-
|
66 |
-
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
67 |
-
|
68 |
-
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
69 |
-
try:
|
70 |
-
ydl.download([yt_url])
|
71 |
-
except youtube_dl.utils.ExtractorError as err:
|
72 |
-
raise gr.Error(str(err))
|
73 |
-
|
74 |
-
|
75 |
-
def yt_transcribe(yt_url, task, max_filesize=75.0):
|
76 |
-
html_embed_str = _return_yt_html_embed(yt_url)
|
77 |
-
|
78 |
-
with tempfile.TemporaryDirectory() as tmpdirname:
|
79 |
-
filepath = os.path.join(tmpdirname, "video.mp4")
|
80 |
-
download_yt_audio(yt_url, filepath)
|
81 |
-
with open(filepath, "rb") as f:
|
82 |
-
inputs = f.read()
|
83 |
-
|
84 |
-
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
85 |
-
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
86 |
-
|
87 |
-
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
88 |
-
|
89 |
-
return html_embed_str, text
|
90 |
|
|
|
91 |
|
92 |
demo = gr.Blocks()
|
93 |
|
@@ -96,14 +53,19 @@ mf_transcribe = gr.Interface(
|
|
96 |
inputs=[
|
97 |
gr.Audio(type="filepath"),
|
98 |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
],
|
100 |
-
outputs="
|
101 |
theme="huggingface",
|
102 |
-
title="Whisper
|
103 |
description=(
|
104 |
-
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
|
105 |
-
|
106 |
-
" of arbitrary length."
|
107 |
),
|
108 |
allow_flagging="never",
|
109 |
)
|
@@ -113,37 +75,24 @@ file_transcribe = gr.Interface(
|
|
113 |
inputs=[
|
114 |
gr.Audio(type="filepath", label="Audio file"),
|
115 |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
],
|
117 |
-
outputs="
|
118 |
-
theme="huggingface",
|
119 |
-
title="Whisper Large V3: Transcribe Audio",
|
120 |
-
description=(
|
121 |
-
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
|
122 |
-
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
123 |
-
" of arbitrary length."
|
124 |
-
),
|
125 |
-
allow_flagging="never",
|
126 |
-
)
|
127 |
-
|
128 |
-
yt_transcribe = gr.Interface(
|
129 |
-
fn=yt_transcribe,
|
130 |
-
inputs=[
|
131 |
-
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
132 |
-
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
133 |
-
],
|
134 |
-
outputs=["html", "text"],
|
135 |
theme="huggingface",
|
136 |
-
title="Whisper
|
137 |
description=(
|
138 |
-
"Transcribe long-form
|
139 |
-
|
140 |
-
" arbitrary length."
|
141 |
),
|
142 |
allow_flagging="never",
|
143 |
)
|
144 |
|
145 |
with demo:
|
146 |
-
gr.TabbedInterface([mf_transcribe, file_transcribe
|
147 |
-
|
148 |
-
demo.launch()
|
149 |
|
|
|
|
1 |
import torch
|
2 |
+
import time
|
3 |
|
4 |
import gradio as gr
|
5 |
import spaces
|
|
|
6 |
from transformers import pipeline
|
7 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
8 |
|
9 |
+
DEFAULT_MODEL_NAME = "openai/whisper-tiny"
|
|
|
10 |
|
|
|
11 |
BATCH_SIZE = 8
|
|
|
|
|
12 |
|
13 |
device = 0 if torch.cuda.is_available() else "cpu"
|
14 |
|
15 |
+
def load_pipeline(model_name):
|
16 |
+
return pipeline(
|
17 |
+
task="automatic-speech-recognition",
|
18 |
+
model=model_name,
|
19 |
+
chunk_length_s=30,
|
20 |
+
device=device,
|
21 |
+
)
|
22 |
+
|
23 |
+
pipe = load_pipeline(DEFAULT_MODEL_NAME)
|
24 |
|
25 |
@spaces.GPU
|
26 |
+
def transcribe(inputs, task, model_name):
|
27 |
if inputs is None:
|
28 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
29 |
|
30 |
+
global pipe
|
31 |
+
if model_name != pipe.model.name_or_path:
|
32 |
+
pipe = load_pipeline(model_name)
|
33 |
+
|
34 |
+
start_time = time.time() # Record the start time
|
35 |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
36 |
+
end_time = time.time() # Record the end time
|
37 |
|
38 |
+
transcription_time = end_time - start_time # Calculate the transcription time
|
39 |
|
40 |
+
# Create the transcription time output with additional information
|
41 |
+
transcription_time_output = (
|
42 |
+
f"Transcription Time: {transcription_time:.2f} seconds\n"
|
43 |
+
f"Model Used: {model_name}\n"
|
44 |
+
f"Device Used: {'GPU' if torch.cuda.is_available() else 'CPU'}"
|
45 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
return text, transcription_time_output
|
48 |
|
49 |
demo = gr.Blocks()
|
50 |
|
|
|
53 |
inputs=[
|
54 |
gr.Audio(type="filepath"),
|
55 |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
56 |
+
gr.Textbox(
|
57 |
+
label="Model Name",
|
58 |
+
value=DEFAULT_MODEL_NAME,
|
59 |
+
placeholder="Enter the model name",
|
60 |
+
info="Some available models: distil-whisper/distil-large-v3 distil-whisper/distil-medium.en Systran/faster-distil-whisper-large-v3 Systran/faster-whisper-large-v3 Systran/faster-whisper-medium openai/whisper-tiny , openai/whisper-base, openai/whisper-medium, openai/whisper-large-v3"
|
61 |
+
),
|
62 |
],
|
63 |
+
outputs=[gr.TextArea(label="Transcription"), gr.TextArea(label="Transcription Info")],
|
64 |
theme="huggingface",
|
65 |
+
title="Whisper Transcription",
|
66 |
description=(
|
67 |
+
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the specified OpenAI Whisper"
|
68 |
+
" checkpoint and 🤗 Transformers to transcribe audio files of arbitrary length."
|
|
|
69 |
),
|
70 |
allow_flagging="never",
|
71 |
)
|
|
|
75 |
inputs=[
|
76 |
gr.Audio(type="filepath", label="Audio file"),
|
77 |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
78 |
+
gr.Textbox(
|
79 |
+
label="Model Name",
|
80 |
+
value=DEFAULT_MODEL_NAME,
|
81 |
+
placeholder="Enter the model name",
|
82 |
+
info="Some available models: openai/whisper-tiny, openai/whisper-base, openai/whisper-medium, openai/whisper-large-v2"
|
83 |
+
),
|
84 |
],
|
85 |
+
outputs=[gr.TextArea(label="Transcription"), gr.TextArea(label="Transcription Info")],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
theme="huggingface",
|
87 |
+
title="Whisper Transcription",
|
88 |
description=(
|
89 |
+
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the specified OpenAI Whisper"
|
90 |
+
" checkpoint and 🤗 Transformers to transcribe audio files of arbitrary length."
|
|
|
91 |
),
|
92 |
allow_flagging="never",
|
93 |
)
|
94 |
|
95 |
with demo:
|
96 |
+
gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"])
|
|
|
|
|
97 |
|
98 |
+
demo.launch(share=True)
|
audio_sample/onetoeight.mp3
ADDED
Binary file (137 kB). View file
|
|
audio_sample/onetofive_enjpzh.mp3
ADDED
Binary file (224 kB). View file
|
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
git+https://github.com/huggingface/transformers
|
2 |
torch
|
3 |
yt-dlp
|
|
|
|
1 |
git+https://github.com/huggingface/transformers
|
2 |
torch
|
3 |
yt-dlp
|
4 |
+
gradio==4.8.0
|