qwq / app.py
jersuxs's picture
Update app.py
360658f verified
raw
history blame
6.74 kB
import gradio as gr
from huggingface_hub import InferenceClient
import base64
import io
from PIL import Image
import requests
# Inicializaci贸n del cliente de inferencia con el modelo especificado
client = InferenceClient("mistralai/Pixtral-Large-Instruct-2411")
def image_to_base64(image_path):
"""Convert an image file to a base64 string."""
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
return encoded_string
def base64_to_image(base64_string):
"""Convert a base64 string to an image."""
image_data = base64.b64decode(base64_string)
image = Image.open(io.BytesIO(image_data))
return image
def describe_image(image, system_message, max_tokens, temperature, top_p):
"""Describe an image using the model."""
if image is None:
return "No image uploaded.", []
# Convert image to base64
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
image_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": "Describe the following image:"},
{"role": "user", "content": image_base64}
]
response = ""
for chunk in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = chunk.choices[0].delta.content
response += token
return response, [(f"User: Describe the following image:", response)]
def respond(
user_message: str,
chat_history: list[tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
) -> str:
"""
Funci贸n para generar respuestas basadas en el historial de chat y par谩metros de configuraci贸n.
Args:
user_message (str): Mensaje del usuario.
chat_history (list[tuple[str, str]]): Historial de chat.
system_message (str): Mensaje del sistema que define el comportamiento del chatbot.
max_tokens (int): M谩ximo n煤mero de tokens a generar.
temperature (float): Temperatura para el muestreo de texto.
top_p (float): Par谩metro top-p para el muestreo de texto.
Yields:
str: Respuesta generada por el modelo.
"""
# Construcci贸n de la lista de mensajes
messages = [{"role": "system", "content": system_message}]
for user_msg, assistant_msg in chat_history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": user_message})
response = ""
try:
# Obtenci贸n de la respuesta del modelo
for chunk in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = chunk.choices[0].delta.content
response += token
yield response
except Exception as e:
yield f"Error al obtener respuesta: {str(e)}"
def main():
"""
Funci贸n principal para iniciar la interfaz de chat.
"""
def update_chat(user_message, image, chat_history, system_message, max_tokens, temperature, top_p):
if image is not None:
description, new_history = describe_image(image, system_message, max_tokens, temperature, top_p)
chat_history.extend(new_history)
user_message = description
if user_message:
response_generator = respond(
user_message,
chat_history,
system_message,
max_tokens,
temperature,
top_p,
)
for response in response_generator:
chat_history.append((user_message, response))
yield "", chat_history, chat_history
else:
yield "", chat_history, chat_history
with gr.Blocks(title="Chatbot con MistralAI", theme=gr.themes.Soft()) as demo:
gr.Markdown("# Chatbot con MistralAI")
gr.Markdown("Un chatbot amigable basado en el modelo MistralAI Pixtral-Large-Instruct-2411 que puede describir im谩genes y mantener un historial de chat.")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(label="Conversaci贸n")
user_message = gr.Textbox(label="Mensaje del Usuario", placeholder="Escribe tu mensaje aqu铆...")
with gr.Row():
submit_button = gr.Button("Enviar")
clear_button = gr.Button("Limpiar")
with gr.Column(scale=2):
image_input = gr.Image(label="Cargar Imagen", type="pil")
image_description = gr.Textbox(label="Descripci贸n de la Imagen", interactive=False)
with gr.Row():
system_message = gr.Textbox(
value="You are a friendly Chatbot.",
label="Mensaje del Sistema",
placeholder="Define el comportamiento del chatbot."
)
max_tokens = gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max New Tokens",
info="M谩ximo n煤mero de tokens generados."
)
temperature = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature",
info="Controla la creatividad de la respuesta."
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (Nucleus Sampling)",
info="Par谩metro para el muestreo del texto."
)
chat_history = gr.State([])
submit_button.click(
fn=update_chat,
inputs=[user_message, image_input, chat_history, system_message, max_tokens, temperature, top_p],
outputs=[user_message, chatbot, chat_history]
)
clear_button.click(
fn=lambda: ([], [], []),
inputs=[],
outputs=[user_message, chatbot, chat_history]
)
image_input.upload(
fn=describe_image,
inputs=[image_input, system_message, max_tokens, temperature, top_p],
outputs=[image_description, chat_history]
)
demo.launch()
if __name__ == "__main__":
main()